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CHAPTERI1

INTRODUCTION

Since the 1940's, the Department of the Army has sponsored programs to
evaluate the condition of Army airfields. The most recent program was initiated in 1982.
In the early to mid 1980's, the advancement of nondestructive test (NDT) procedures for
pavements (Green and Hall 1975, O'Brien et al 1983, Bush 1986), coupled with the
development of the pavement condition index (PCI) procedure (Shahin and Kohn 1977),
provided a means for evaluating airfield pavements relatively quickly and consistently.
The procedures used for evaluating pavements have been continually improved through

research and the application of new technology.

Airfield pavement evaluations performed by the Corps of Engineers involve one
main objective (TM 5-826-2, 1990): the determination of the load carrying capacity of
the pavement expressed in terms of pass/load relationships. In addition, a visual survey
is conducted to rate the surface condition of the pavements (TM 5-827-1, 1981).
Nondestructive testing methods are used to evaluate the structural capacity of pavements,

and the PCI is used to rate the surface condition of pavements. The pavement evaluation

This dissertation follows the style and format of the Journal of Transportation Engineering of the
American Society of Civil Engineers.

! Technical Manuals (TMs), Army Regulations (ARs) and Engineer Instructions (Els) cited in the text are
entered in the reference section under Headquarters, Department of the Army, Headquarters, Departments
of the Army and Air Force or Headquarters, U.S. Army Corps of Engineers, as appropriate.




procedure makes a separate determination of the structural evaluation and the surface
condition. It has been determined that the structural capacity and PCI cannot be
correlated and that both are necessary to address pavement performance (Hall 1987).
Pavements with low PCI ratings may have adequate structural capacity for imposed
loads; conversely, pavements with excellent surface conditions may not have adequate

structural capacity for the anticipated loads.

The current Corps of Engineers method of structurally evaluating flexible
pavements uses NDT equipment to obtain load-deflection data for each pavement feature
(E1 02C036 1997). A feature is an area of pavement of like cross section subjected to
similar loads. The load-deflection data coupled with layer material properties are used to
backcalculate layer moduli. The pavement system is modeled as a layered-elastic system
with loads applied to the surface. The strains caused by the loading are calculated at
critical points. The values of these strains are compared to empirical criteria, and a ratio
of calculated to allowable values, termed the damage value, is calculated (EI 02C036
1997). If the damage value exceeds one, indicating the calculated strains are greater than
the allowable values, an overlay thickness is determined that will reduce the calculated
strains so that the damage value will be less than or equal to one. Although inherent in
the criteria is the consideration that the pavement will be able to withstand the calculated
strains for a certain number of cycles, no fatigue or reduction in life is assessed to
account for previous loadings of existing pavements when estimating expected

performance.



The Corps of Engineers uses the PCI procedure for visually assessing the
condition of Army airfield pavement surfaces. The PCI procedure involves the
inspection of portions of a pavement feature to determine the presence, severity level and
quanftity of surface distresses. The PCI survey results are entered into Micro PAVER, a
computer program used for managing pavement information data. The results of the
structural evaluation can also be entered and stored in Micro PAVER. The Micro
PAVER program calculates a numerical PCI value for each feature. Micro PAVER
provides a means of projecting PCI performance through the use of family performance
" curves (Micro PAVER ver 3.21). Currently, the airfield pavement evaluation procedure
used by the Corps of Engineers does not use the PCI projection capability of Micro
PAVER, nor any other condition prediction procedure. The airfield pavement
evaluations report the history of pavement performance in terms of the results of the

most recent past condition survey compared to the current survey.

The Corps of Engineers evaluation procedure recommends maintenance and
repair procedures based on the current PCI level and the types of distresses present on
individual pavement features (AR 420-70). The extent and severity of particular distress
types are analyzed to determine appropriate maintenance and repair alternatives for
particular pavement features. A procedure that would predict the growth of particular
pavement distress types based on measurable input parameters would allow the
prediction of when work might be needed if none were currently needed and provide an

estimate of future work requirements and funds needed.




OBJECTIVES

The objectives of this study are to determine the predominant distress types
observed on flexible Army airfield pavements, develop a procedure for predicting the
growth of individual distress types on flexible Army airfield pavements, and
recommending future research areas for improving the distress growth prediction

procedure developed.

SCOPE

For many years Army airfields have been periodically evaluated for structural and
surface condition. The evaluation of these Army airfields in the United States and
around the world has included the collection of NDT and PCI data. The large number of
Army airfield evaluations should provide adequate data for developing performance
curves for individual distress types. The research reported herein consists of the tasks

discussed in the following paragraphs:

TASK I: Data from Army airfield evaluations and other pertinent sources were
collected and organized. The Army airfield evaluation reports were
studied to determine what information was available and appropriate. In
addition, environmental data from the National Oceanic and Atmospheric
Administration were collected to supplement the data contained in the
evaluation reports. The collected data were compiled and formatted for

accessibility and use in the remaining part of this study.



Task II:

Task III:

Task IV:

The Army airfield pavement evaluation data were analyzed to determine
the predominant types of distresses found on flexible Army airfield
pavements. The purpose of this task was to determine the predominant
distress mechanisms for investigation into causative factors. The
predominant types of distress influenced the selection of predictive

performance equations and appropriate independent variables.

A literature review was conducted to determine the types and applicability
of existing pavement performance models. In addition, the causative
factors for the most predominant distress type on Army airfield

pavements were reviewed.

An appropriate form for the performance prediction equation was
selected. The performance of pavements, in terms of distress
development, generally follows a similar pattern, and this was exploited.
The selected equation was taken from probability, which is also
appropriate for defining pavement performance. The selected form of the
distress development equation was used to determine performance curves
for distress types on individual pavement features based on observed
performance. The coefficients used to shape and scale the performance
curves to fit the field data were analyzed for correlation to appropriate

independent variables such as environmental data. A procedure was




developed for determining the time to the critical level of distress density
at specific levels of reliability. The critical level of distress density is
defined as that level which corresponds to the minimum allowable PCI

according to Army Regulation 420-70.

TASK V: Areas of future research for improving the prediction technique developed
were recommended.
DISSERTATION FORMAT

The findings and results of this investigation are presented in the following

manner:

Chapter II:

Chapter III:

The introduction to Chapter II presents a discussion of the initial objective
of this study and why it had to be redirected. In addition, a review of
pavement evaluation concepts, structural and condition evaluation
procedures used by others, the condition prediction method used in Micro
PAVER, thermal cracking models, and the causative factors for block

cracking are presented.

This chapter reviews the current Corps of Engineers procedure for

conducting Army airfield pavement evaluations. Included is a detailed



Chapter IV:

Chapter V:

Chapter VI:

discussion of the PCI survey and data analysis procedure and the

nondestructive pavement testing and data analysis procedure.

This chapter presents a summary of data obtained from the Army airfield
pavement evaluation program. The data includes PCI results, physical
property data, and climatic data from 16 Army airfields. In addition, an
analysis is presented of the survey data in terms of defining predominant
distress types. A discussion of the data analysis provides the reasoning

for the prediction technique developed in Chapter V.

This chapter presents the model development for predicting the growth of
individual distress types. The model development includes a presentation
of the selected form of equation for describing the growth of individual
distress type densities, the determination of associated shape and scale
parameters, the correlation of the parameters to appropriate prediction
variables, such as environmental data, and the application of a reliability

analysis.

This chapter contains the summary, conclusions, and recommendations

for future research.




CHAPTERII

LITERATURE REVIEW

The initial direction of this research effort was aimed at developing a technique
for better predicting the structural performance of flexible Army airfield pavements.
Based on the initial analysis of the data available and the structural performance of
flexible Army airfield pavements, it became evident that this goal would not be
attainable. Flexible Army airfield pavements rarely fail structurally as found in the
Army airfield evaluation reports reviewed. In order to verify this, a review of
photographs from the report detailing the test sections used to establish the structural
criteria were used to estimate PCI values at time of failure. The results revealed that the
PCIs of most sections at structural failure would have been, on a scale from 0 to 100, in
the single digit range (Burns et al 1971). Table 1 provides a summary of the test section
PCIs based on a review of the photographs from the multiple-wheel heavy gear load
(MWHGL) pavement tests (Burns et al 1971). Two of the test sections (item 1 lane 2
and item 2 lane 2) had a PCI of 33, but this was because rutting could not be verified due
to the lack of a straight edge in the photographs. It is believed that these sections did

have rutting, and if so, their PCIs would have also been in the single digits.



TABLE 1. MWHGL Study PCI Results of Failed Pavement Items

item Lane PCI
(1) () 3)
1 1 2
1 2 33
2 2 33
1 2A 8
2 2A 0
3 3B 0
4 3B 6
5 3B 0
2 1 3

The Army requires that all active airfield pavements be maintained at or above a

minimum PCI level (65-75 for runways and primary taxiways and 40-55 for secondary

taxiways and aprons)(AR 420-70). This policy precludes most i)avements from reaching
a state of structural failure according to the established failure criteria. Most flexible
military airfield pavements have been maintained at or above the minimum PCI level
required as found in the Army airfield reports reviewed. In fact, no pavements in active

use were found to have a PCI at as low a level as the structurally failed pavement items

observed in the MWHGL report.
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Additional problems frustrating the attempt to develop a structural performance
model involved the construction history records and traffic data records. Both of these
items were suspect in terms of their accuracy for most of the airfields reviewed. The
construction history records did not coincide with measured pavement thicknesses. The
traffic records obtained from the airfield operations office generally indicated levels of
operations well in excess of the levels observed by the evaluation crews. Traffic data
and construction history are essential for determining the fatigue life and structural

capacity of a pavement.

In addition to the previously stated difficulties with developing a structural
performance model, the majority of the distress types observed on the Army airfield
pavements were attributed to environmental causes. Not only had few pavements failed
structurally, the distress types observed were not structural in nature. The predominant
distress type observed on the majority of the airfields reviewed was block cracking,
which is considered an environmental distress commonly attributed to a type of thermal
cracking (Shahin and Kohn 1981). A summary of the distress data is presented in

Appendix A.

Since the data obtained through the Army airfield pavement evaluation program
would not support the development of a structural performance model, and the need for a
structural performance model was determined to be minimal, the research was redirected

toward developing a surface condition prediction technique. Currently, the Corps of
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Engineers pavement evaluation procedure uses no technique for predicting the future
performance or fund needs of airfield pavements. The pavement evaluation report either
_identifies the pavement as needing work or not needing work; it does not say when work
will be required in the future. A surface condition prediction procedure could be used to
estimate when the PCI would be expected to reach a level requiring the expenditure of
funds. The level of PCI that would require the expenditure of funds is generally the
minimum level of PCI at which airfield pavements must be maintained which is
established by the Army (AR 420-70). This condition prediction tool could be used by
installations to justify funding requests to insure funds would be available when the

pavement condition reaches the minimum established level.

LITERATURE REVIEW
The remaining portion of this chapter briefly reviews some pavement evaluation
concepts, pavement performance prediction techniques, thermal cracking models, and

block cracking causes.

Pavement Evaluation Concepts

Figure 1 schematically illustrates the serviceability of a pavement as a function of
time (Ullidtz 1987). Serviceability is a point-in-time measurement of how well a
pavement is serving its intended function. Performance can be defined as the time

history of serviceability and is represented by the curve in Figure 1 (Ullidtz 1987).
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FIG 1. Schematic Representation of Pavement Performance
(Note: The curve above is represented by a straight line, however many models use a
sigmoidal or “s” shaped curve for modeling performance (Smith 1993).)

The AASHTO pavement design guide uses the concept of present serviceability

index (PSI) as the performance variable upon which the design is based (AASHTO

1993). The concept of serviceability was developed at the AASHO road test. The PSI is

determined by measurements of roughness and distress. The PSI ranges in value from

zero to five. The guide is concerned with functional and structural performance.

Functional performance is a measure of how well the pavement is serving the user, and

structural performance relates to the physical condition of the pavement (AASHTO

1993).
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An adequately designed new pavement should begin with a high level of
serviceability and should give satisfactory performance for the design life as long as
routine maintenance is provided. The level of serviceability will decrease as traffic and
environmental effects cause distresses to develop with usage and exposure to the

environment.

The pavement condition index (PCI) survey procedure was developed by the
Corps of Engineers to assess the surface condition of a pavement with a numerical rating
(Shahin and Kohn 1979). The PCI survey is a visual inspection of the airfield pavements
to determine the present surface condition (TM 5-826-6 1989). The condition survey
procedure requires the inspection of portions of the surface of a pavement feature. The
survey team records distress types, severity levels, and quantities. The PCI of a feature is
based on the survey results. The PCI is a numerical indicator based on a scale from 100
to 0. Pavement condition ratings (from excellent to failed) are assigned to different
levels of PCI values. These ratings and their respective PCI value definitions are shown

in Figure 2.

Pavement deflection response under loads has been related to performance
(Joseph 1971, Hveem 1955), and deflection measureménts with the falling weight
deflectometer (FWD) are routinely used to evaluate pavement structural capacity (TM 5-
826-5 1993). However, the elastic (rebound) deflection is nearly constant for much of

the pavement life (except for seasonal effects of moisture and temperature variations) as




indicated by Figure 3 (Moore et al 1978). Figure 3 implies that the deflection

14

assessment of structural capacity alone cannot differentiate the pavement age or amount

of structural life that has been depleted.

Pavement Condition Pavement Condition
Index (PCI) Rating
100

Excelient

85
Very Good

70
Good

55
Fair

40
Poor

25
Very Poor

10
Failed

0

FIG 2. Numerical PCI Values Versus Pavement Condition Rating
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Deflection

Initial -
Phase

Failure

Functional Phase Phase

Time/Loads

FIG 3. Deflection Response Versus Time/Performance

Pavement evaluation concepts are used as tools to measure the performance of
pavements. The evaluation concepts are used in pavement performance models that
predict the future condition of pavements. Knowledge of the future condition provides
the owning agency with information for estimating the type of work that will be required
and the funds that will be needed to maintain their pavements at a level deemed
appropriate over some selected analysis period. Pavement performance prediction
models can provide information at both the network level and project level for pavement
management. Network level models are less detailed than project level models.
Network level models are used for the selection of treatment strategies; size, weight and
cost allocation studies; and trade-off analyses between costs, maintenance and damage

(Lytton 1987). Project level models are used for pavement design and analysis, and life-

cycle cost analyses of alternative designs (Lytton 1987).
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Pavement Performance Models

A paper (Gronberg and Blosser 1956) presented at the 1956 Highway Research
Board meeting indicates that determining the expected life of pavements has been an
important topic of consideration for many years. Gronberg and Blosser performed a
statistical analysis with the goal of determining the lives of highway surfaces. Their
study involved performing survivor curve analyses on eight pavement surface types. The
survivor curve analyses calculated the average pavement life of each pavement type
using a definition of average service life as the time after construction that the surface
remained in service prior to being replaced, resurfaced, reconstructed, or otherwise taken
out of service. From this study, remaining service life was predicted in terms of years,

based on the age of the pavement and the projected life of the pavement type.

PCI Prediction Techniques

A great deal of research has been conducted in projecting pavement performance
as defined in terms of the PCI (Shahin and Becker 1985, Shahin 1982, Shahin and
Rozanski 1977). The performance history of PCI over the life of a pavement generally
follows a trend as represented by a sigmoidal shaped curve shown in Figure 4 (Smith et
al 1987). If maintenance or repair is performed on the pavement over its life, there is
generally an increase in PCI. Following the increase in PCI, the performance history
continues along a new curve which is often similar to the initial curve as shown in Figure

5 (Smith et al 1987).
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FIG 4. PCI Trend with Time
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FIG 5. Performance History with Maintenance
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Initial PCI prediction models grouped large quantities of data for different
pavement types (flexible, or rigid). Regression analyses were performed on the large
databases to provide curves for predicting pavement performance (Nunez and Shahin
1986). More sophisticated procedures using family curves, data filtering, and curve
fitting techniques have also been developed and applied to predicting pavement
performance (Shahin et al 1987). The underlying basis for many PCI prediction models
are regression equations developed from the analysis of large databases containing

information on the past performance of similar pavement types.

Micro PAVER, the pavement database manager used by the Army for storing and
analyzing pavement evaluation data, provides a method called “family curves” for
predicting pavement performance in terms of PCI. Micro PAVER provides the user the
capability to select similar pavement features for developing a prediction curve for a
particular feature. The selected pavement features are considered a “family,” and the
performance of the family of features is used to predict the performance of the particular
feature being analyzed. If the prediction time for the particular feature is beyond the data
existing in the family curve, the family curve is extrapolated as a straight line with a

slope equivalent to the last part of the existing curve (Micro PAVER ver 3.21).
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Minnesota Prediction Model
Many state departments of transportation have studied the performance of their
pavements with the goal of predicting pavement performance. As an example,

Minnesota has done much research in the area of projecting pavement performance.

In 1980, the Minnesota Department of Transportation (MinnDOT) published a
report (Lukanen 1980) that calibrated and modified the AASHTO design equation for
flexible pavements to the conditions that exist in Minnesota. The study resulted in a new
pavement design procedure for Minnesota. The primary modification to the design
equation was the incorporation of a relationship between the maximum spring time
Benkleman beam deflection and the number of accumulated standard axle loads that
deteriorated the pavement to a residual present serviceability rating (PSR) of 2.5. The
PSR ranges from 5 to 0. The residual PSR is the value expected at the end of the design
life of the pavement. Mechanics are involved in this equation through the relationship of
deflection to serviceability. Although pavement deflection has been related to pavement
performance in the past (Joseph and Hall 1971, Hveem 1955), the relationship between
deflection and percent life used is not clear as evidenced by an additional report for

MinnDOT (Skok and Lukanen 1982).

The 1982 MinnDOT report (Skok and Lukanen 1982) states that there is no
statistically significant change in deflection over time, based on a study measuring

pavement deflections over a 14 year period. The purpose of the 1982 report was to
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determine the requirements needed for designing an overlay. The report found that the
measured deflection of the pavement does not increase with time or increase with a rise
in functionality reducing distresses, but rather increases when the section begins to fail

structurally.

A further report for MinnDOT (Lukanen 1986) developed pavement life
prediction models for various pavement types based on data collected on pavements
from 1967 to 1984. The study found that there were large variations in the PSR, surface
rating and individual distress types; however, the study stated that the database was large
enough to develop performance prediction models. Those pavements that exhibited very
little decrease in PSR with time were omitted from the model development. The report
also determined that the 95 percent confidence limits for the intercept, or initial PSR, of
the regression equation developed for asphalt surfaced pavements was 2.75 to 4.20.
Layer thicknesses and material types were not used in the model. The pavements, for
each pavement type studied, were categorized into one of nine groups. Three traffic
levels (low, medium, and high) were defined and combined with three subgrade
strengths (low, medium, and high) for a total of nine pavement groups. Regression
analyses were run on each of the nine groups to determine the relationship between time

and the parameter under consideration (PSR, surface rating, or individual distress types).
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Texas Method of Determining Remaining Life

The Texas Transportation Institute and Texas A&M University developed a
procedure for the Texas Department of Transportation to use in estimating the remaining
structural life for flexible pavements (Michalak and Scullion 1995). The procedure
outlined in the “Modulus 5.0: User’s Manual” (Michalak and Scullion 1995) uses shape
factors determined from the FWD measured deflection basin and the deflection at the
seventh sensor (farthest from the loading plate) to determine strength parameters for the
surface, base and subgrade of the pavement. Based on these parameters, estimates of
tensile strain in the asphalt and vertical strain in the subgrade are made. These estimates
are coupled with the projected traffic and existing cracking and rutting to categorize the

estimated life into periods of 0-2, 2-5, 5-10, or 10+ years.

AASHTO Model
Performance models, such as the American Association of State Highway and
Transportation Officials (AASHTO) Design Method (AASHTO Guide 1993), are used

for projecting the functional condition of pavements. In the AASHTO design guide the

desired or allowable change in the present serviceability index (PSI) is required in the
design equation. The result of the AASHTO design guide is a pavement section that will
experience a change in PSI only of the magnitude desired over the design life of the
pavement. The AASHTO design equation is intended to consider pavement perfor-
mance, traffic, roadbed soil, materials of construction, environment, drainage, reliability,

life-cycle costs, and shoulder design. The guide also states that the major factors

O
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influencing the loss of serviceability are traffic, age, and environment. Age is indirectly
incorporated in the design equation. Traffic is directly incorporated in the design
equation through 18-kip equivalent-single-axle load applications. The environment is
indirectly handled through the drainage coefficient incorporated in the structural number

determination.

Thermal Cracking Models

Because block cracking was found to be the most predominant distress observed
on Army airfield pavements, and because block cracking is generally considered a form
of thermal cracking, a review of some thermal cracking models was considered

appropriate.

The first thermal cracking model reviewed was developed by Shahin (Shahin

1972). This model actually consists of four models that are described as follows:

Model 1 - Simulation of bituminous pavement temperatures
Model IT - (i) Estimation of asphalt concrete stiffness as
a function of temperature and loading time
(i1) Prediction of in-service aging of asphalt
(iii) Estimation of thermal stresses
Model III - Prediction of low temperature cracking
Model IV - Prediction of thermal-fatigue cracking (Shahin 1972)
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The first distress type addressed by the model is low temperature cracking, which
occurs when the tensile strength of the asphalt is exceeded by the thermally induced
tensile stress. A low temperature spike or a rapid decrease in temperature may cause this
type of crack. The crack is due to a one-time event. However, the asphalt concrete
strength and thermally induced stresses are described in terms of a probability
distribution, which results in the development of observed cracking over time (Shahin

1972).

The second distress type addressed by the model is thermal fatigue cracking
which is described as being the result of daily fluctuations in temperature. The daily
temperature cycling induces stresses below the ultimate tensile strength of the asphalt
concrete. The damage values for each cycle are additive, and eventually the fatigue limit
of the asphalt concrete is reached, causing the asphalt concrete to crack. Thermal fatigue
cracking is not due to a single event; rather, it is due to a compilation of events, and the

cracks develop over time (Shahin 1972).

Shahin’s Model I involves an environmental model which predicts the
temperature of the asphalt concrete based on material and weather data inputs. The
material properties used include unit weight, thermal conductivity, specific heat and
surface absorptivity. The weather data includes mean air temperature, air temperature
range, mean wind velocity and solar radiation. Based on these input data, a sinusoidal

model is used to predict the pavement temperature cycles through a day (Shahin 1972).
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The second model (Model II) predicts the asphalt binder stiffness, asphalt
concrete stiffness, and the subsequent thermally induced stresses. The stiffness of the
asphalt used in the model is determined using Van der Poel’s theory (Shahin 1972). Van
der Poel developed a nomograph based on experimental data and the concept that the
asphalt stiffness is a function of the tensile stress divided by the total strain. In addition
to the asphalt stiffness prediction using Van der Poel’s nomograph, an increase in
stiffness is predicted based on, and limited to: time, 1-100 months; original ring and ball
temperature, 99-125° F; and thin film oven test, 30-70 percent. The asphalt stiffness and
the environmental model are used to predict the stiffness of the asphalt concrete. Based
on these stiffness properties, thermal stresses are determined. The determination of the
stresses involves the development of a method for estimating the thermal loading time
(since the stress is considered a function of the stiffness of the asphalt concrete and the

time of loading).

In the final models (Models III and IV) a stochastic approach is used for
comparing the estimated tensile strength and the thermal stress induced in the asphalt
concrete. As stated previously, the low temperature cracking is attributed to a one-time
event; however, the distribution in strength and induced stress is considered for
describing the development of the cracking. The fatigue cracking is addressed by
considering a damage concept whereby the damage is accumulated over several time

periods based on the temperature cycling and the stiffness of the asphalt concrete. The
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stiffness of the asphalt increases with time, and the damage is added for each time period
until it reaches a critical value and the asphalt concrete cracks. Similarly to the low-
temperature cracking, stochastic considerations are used to describe the variations in
stiffness, induced strength and stress, and the resulting development of fatigue cracking

over time.

A more recent thermal cracking model, which is still undergoing some
development, is the SHRP thermal cracking pavement performance model (Lytton et al
1993). The SHRP model consists of two primary parts: 1) a mechanics-based model that
calculates the progression of a crack at one site with average material properties, and 2) a
probabilistic model that predicts the global amount of visible thermal cracking (Lytton et

al 1993).

The SHRP model, similar to Shahin’s model, requires the input of material and
environmental data. The material inputs include data concerning the pavement structure
and the pavement material properties. Material properties include creep compliance and
tensile strength of the asphalt concrete (Janoo 1998). The environmental data includes

temperature data, latitude of the site, wind velocity data, and sunshine data.

The SHRP environmental model is used to predict the temperature distribution in
the asphalt layer. A pavement response model predicts the stress at various nodes

through the pavement depth. The stress distribution is used to provide input to the
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pavement distress model. The pavement distress model uses a fracture mechanics
approach to predict crack development based on the average material properties. A
stochastic approach is then applied to predict the amount of cracking that will be
observed, based on the average crack depth and the assumed distribution of crack depths

within the asphalt concrete surface layer (Lytton et al 1993).

DISCUSSION OF PERFORMANCE MODELS
Although the prediction models presented were developed for road and highway
pavements, they were reviewed to determine if the procedures used could be applied to

Army airfields.

The 1950's studies for projecting pavement life were appropriate for determining
what types of pavements were performing well and the life expectancy for each
pavement type studied. Gronberg and Blosser provided an approximate method for
estimating pavement life based on the results of thousands of miles of in-service roads.
The results of these studies had limited applicability to project-level work for

determining the remaining life of a particular pavement.

The PCI rating is appropriate for quantifying the overall current condition of a
pavement. The PCI prediction models available in Micro PAVER are based on the
performance of like pavement types. Although these models are based on the

performance of like pavements, they do not consider the types of distresses nor the
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contributing factors to particular distress type development for individual pavement
features. In particular, the environmental and structural loading conditions are not
considered in these performance prediction models. Thus, the family curve PCI models,
which do not consider any contributing factors to distress development, are severely
limited in their ability to predict the performance of particular pavement features. The
ability to predict the performance of individual features provides the owning agency with
information on the work effort and funds required to maintain their pavements at a level

deemed appropriate.

The design procedure developed for MinnDOT is a modification of the AASHTO
design procedure with a calibration for the experiences in Minnesota. The intercept or
initial condition of the pavements, with a 95 percent confidence level, is modeled to be
between a PSR of 2.75 and 4.2. The residual PSR as defined by the design procedure is
2.5. This indicates that there is an extremely wide range for the expected initial PSR.
This wide range in initial PSR indicates that some of the pavements are close to failure
when constructed. Since the design equation is based solely on a regression analysis, the
results are more appropriate for network level analysis. It is worth noting that those
pavements that were performing well, as defined by very little decrease in PSR, were
omitted from the study. If these pavements had been included in the analysis, they

probably would have had an impact on the performance equations.
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The Texas evaluation procedure seems to have promise and may have provided
an avenue for further study had this study not been directed away from a structural
performance model. However, the concept of categorizing pavements in terms of
expected performance in years (i.. 0-2, 2-5, 5-10, and 10+) is considered very
appropriate for the type of predictions that would be beneficial to local Army

installations.

The AASHTO design equation is the result of a regression analysis based on the
AASHO road test, modified due to experience and knowledge gained since the AASHO
road test. Because the design procedure is empirically based, it is not prudent to try to
extend the prediction capabilities beyond the conditions that existed at the time of the
road test or the conditions that have been incorporated since. As evidence of the design
equation limitations, the guide instructs the designer to use local proven experience
where it differs from the results of the design guide (AASHTO 1993). In addition, the
AASHTO procedure was developed for highways and would be difficult to apply to

airfields.

The thermal cracking models in general, and the SHRP thermal cracking model
in particular, may have some promise for use in better predicting pavement performance
in terms of the development of block cracking. The SHRP thermal cracking model is
based in mechanics, which allows for it to be extended beyond those conditions that

existed at the time of development. In addition, since the loads dealt with in the thermal
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cracking model are environmental, airfields and highways would be expected to have
similar experiences. Currently, the Corps of Engineers does not collect the input
parameters required for using these models. The material properties required for input to
the SHRP model include at a minimum the creep compliance and tensile strength of the
asphalt concrete (Janoo 1998). During airfield evaluations, the Corps of Engineers does
not usually collect material samples for laboratory testing. The distress prediction model
developed herein (see Chapter V) could possibly be extended to include components of

the SHRP thermal cracking model if and when appropriate data are collected.

BLOCK CRACKING

The following description of block cracking was taken from the technical manual
(TM 5-826-6 1989), which is used by the Corps of Engineers for conducting PCI
surveys. It is appropriate to begin the discussion of block cracking by including this
definition, because this is the definition used by the field crews for identifying the

distress type of block cracking.

Block cracks are interconnected cracks that divide the pavement into
approximately rectangular pieces. The blocks may range in size from -
approximately 1 by 1 foot to 10 by 10 feet. When the blocks are larger than 10 by
10 feet, they are classified as longitudinal or transverse cracking. Block
cracking is caused mainly by shrinkage of the asphalt concrete and daily
temperature cycling (which results in daily stress/strain cycling). It is not load-
associated. Block cracking usually indicates that the asphalt has hardened
significantly. Block cracking normally occurs over a large portion of pavement
area, but sometimes will occur only in nontraffic areas. This type of distress
differs from alligator cracking in that alligator cracks form smaller, many sided
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pieces with sharp angles. Also, unlike block cracks, alligator cracks are caused
by repeated traffic loadings, and are therefore only found in traffic areas (i.e.
wheel paths). (TM 5-826-6 1989).

From the preceding definition of block cracking, it is apparent that the primary
causes of block cracking are considered to be environmental and material factors. The
important points to notice from the preceding definition are the effects of daily
temperature cycles and the observation that the asphalt has hardened significantly. It is
also important to note that block cracking is observed to occur in non-traffic areas,

indicating that it is not caused by vehicular loads.

The daily temperature cycling reference in the definition of block cracking would
indicate that block cracking is primarily due to thermal fatigue cracking as opposed to
low temperature cracking. The fact that block cracking does not usually occur for many
years, sometimes as many as ten to twenty years after construction, would support the

inference that it could be considered a thermal fatigue-related problem.

The observation that the asphalt has hardened can be attributed to two
phenomena, oxidative aging and molecular structuring. Because asphalt in pavements
occurs as a film exposed to atmospheric oxygen, it oxidizes, resulting in the formation of
polar, strongly interacting, oxygen-containing chemical functional groups. The

formation of these oxygen-containing functional groups changes the viscosity of the
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asphalt, making it more brittle and leading to pavement failure in the form of cracking
(Petersen 1984). Thixotropic or steric hardening are terms often used to describe the
molecular structuring phenomenon found in asphalt cement. This molecular structuring
behavior is one of the least understood effects because of the difficulty in measuring it.
The steric hardening process is reversible through heating or continued mechanical
working. In addition, the molecular structuring resulting in the structural hardening is
lost during the solvent recovery of asphalt from aged pavements. The majority of the
work studying this phenomenon was performed in the 1930's with some additional work
being conducted in the 1950's. One of the results from this early work indicated that

structural hardening and oxidative aging may be synergistic (Petersen 1984).

The synergy of oxidative aging and molecular structuring would result in the
asphalt becoming more brittle than would be expected as a result of the additive effect of
each cause. This may cause the asphalt to become more susceptible to both low
temperature and thermal fatigue cracking. The observation that block cracking is
observed in non-traffic areas supports the idea that the molecular structuring portion of
the stiffening ¥nay be significant. Because the asphalt is not mechanically worked in the

non-traffic areas, the molecular structuring is allowed to develop.

In addition to the definition for block cracking, the definition for reflective

cracking is given.
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This distress occurs only on pavements having an asphalt or tar surface over a
portland cement concrete slab. This category does not include reflection
cracking from any other type of base (i.e., cement stabilized or lime stabilized).
Such cracks are listed as longitudinal and transverse cracks. Joint reflection
cracking is caused mainly by movement of the PCC slab beneath the AC surface
because of thermal and moisture changes. It is not load-related. However,
traffic loading may cause a break down of the AC near the crack, resulting in
spalling and FOD potential. If the pavement is fragmented along the crack, the
crack is spalled. A knowledge of slab dimensions beneath the AC surface will
help to identify these cracks. (TM 5-826-6 1989).

The definition of reflective cracking indicates that it is only found where a PCC
pavement underlies the AC surface. However, if an AC surface has been placed over an
old AC pavement that had block cracking, the conditions that cause reflective cracking
exist. In the case of a new AC surface over an old block-cracked AC pavement, the AC
overlay pavement would be expected to exhibit block cracking at a much faster rate than

it would had it been a placed on a non-block-cracked pavement. Unfortunately in the
model development presented in Chapter V, data did not exist describing the condition
of existing pavements before overlays were applied. Therefore, those pavements that
may have experienced block cracking due to underlying block-cracked pavements can

not be differentiated from other pavements.

Because many of the pavements that suffer from block cracking do not receive
significant usage, some agencies may not believe they need to evaluate the impact of this

distress type on future performance capability. This may be a mistake for the Army
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because the Army has many pavements that receive little regular use, but would be
required in case of a major deployment. The Army pavements are deéigned and built
with consideration for deployment-level usage. Normal day-to-day operations on most
Army airfields are relatively light in terms of the number of operations and load levels
when compared to deployment operations. Because block cracking develops while
waiting for a deployment, Army airfield pavements with block cracking may not be able
to adequately support a deployment if subjected to one. The current structural evaluation
procedure tests the center of blocks; the effects of the cracking are not considered.
Therefore it is not known if block cracked pavements will perform adequately during a
deployment. However, it can be assumed that unsealed block cracking will permit water
to enter a pavement structure, and this could lead to structural weakening. The Army is
expending large sums to build pavements intended to support an emergency, and block

cracked pavements may not be capable of supporting a critical mission when required.
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CHAPTER III

CORPS OF ENGINEERS PAVEMENT EVALUATION PROCEDURE

The main objective of Army airfield pavement evaluations is to determine the

load carrying capacity of the pavements (TM 5-826-2 1990). However, Army airfield

pavement evaluation reports document both structural capacity and surface condition.

Reports include allowable aircraft loads (structural capacity) and the identification of

maintenance, repair and structural improvement needs for each airfield pavement feature

based on the structural evaluation and the surface condition of the pavements (EI

02C036 1997, AR 420-70). The results of evaluations are used to (McCaffrey 1994):

provide preliminary engineering data for pavement design,

assist in identifying and forecasting maintenance and repair work, the
preparation of long range work plans, and programming funds for the
various work classification categories,

determine type and gross weights of aircraft that can operate on a given
airfield feature without causing structural damage or shortening the life
of the pavement structure,

determine aircraft operational constraints as a function of pavement
strength and surface condition,

determine the need for structural improvements to sustain current level of
aircraft operations,

determine the need for structural improvements to accommodate in-
creased use of the airfield (e.g., to accommodate mobilization out loading
or new aircraft mission).



35

The Corps of Engineers evaluation procedure considers the structural evaluation
and pavement surface condition determinations separately (Hall 1987). When
determining maintenance repair and construction strategies, the Corps of Engineers
procedure only uses the current PCI data unless the structural evaluation indicates a
deficiency. If the structural evaluation indicates a deficiency, maintenance and repair
alternatives are only suggested that will bring the pavement up to the minimum PCI
value required for the pavement as defined in AR 420-72. It is expected that con-
struction will be accomplished as soon as practical to resolve the structural deficiency
problem. If the PCI is above the minimum value, the Corps of Engineers evaluation
procedure does not attempt to predict a time to reach the critical PCI level. The critical
PCI level is defined as the minimum level allowed by the Army, which is 65 - 75 for
runways and primary taxiways and 40 - 55 for secondary taxiways and aprons (AR 420-

72).

STRUCTURAL EVALUATION PROCEDURE

The Corps of Engineers structural evaluation procedure is essentially the reverse
of the design procedure. In the design procedure the results obtained are the required
thicknesses of the pavement layers based on aircraft load and pass level requirements
(Barker and Brabston 1975). In the evaluation procedure the results are the allowable
passes or the allowable load of the design aircraft based on the existing structure (EI
02C036 1997). Both the design and the evaluation procedures require the input éf

material properties. The design procedure assumes these material properties will be
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obtained during construction. The evaluation procedure uses inferred modulus values for
the pavements layers based on nondestructive test results and environmental data. The
design procedure requires the design aircraft load and pass level, which are used in
conjunction with design material properties to determine a pavement thickness. A
similar procedure is followed in the evaluation procedure. A design aircraft pass and
load level are determined, coupled with the layer modulus values to determine a required
pavement thickness. If the required thickness is less than or equal to the actual pavement
thickness, the pavement is considered adequate. If the calculated thickness is greater
than the actual thickness, the load and or pass level is reduced until the calculated and
actual thicknesses are equal. The difference between the calculated thickness for the full
load and pass level and the actual thickness for deficient pavements is reported as the
overlay thickness requirement. The Corps of Engineers bases a pavement design on

traffic loads estimated over a 20-year design life (EI 02C036 1997).

The first step involved in conducting a nondestructive structural evaluation is to
test the pavement with a device such as a falling weight deflectometer (EI 02C036 1997).
Currently the airfield evaluations conducted for the Army by the Corps of Engineers use
either a Dynatest model 8000 falling weight deflectometer (FWD) or a Dynatest heavy
falling weight deflectometer (HWD). Both the HWD and FWD operate similarly;
however, the HWD is capable of applying a maximum force of approximately 224 kN
(50,000 Ibs) while the FWD is capable of applying a maximum force of approximately

112 kN (25,000 1bs). With these trailer mounted devices, a dynamic force is applied to
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the pavement surface by dropping a weight onto a set of rubber cushions. This results in
an impulse loading with a 25-50 millisecond duration on an underlying circular plate 300
mm (11.8 in.) in diameter, which is in contact with the pavement. The applied force and
the pavement deflections are respectively measured with load cells and velocity
transducers. The drop height of the weights can be varied to produce a range of force
levels. The systems are controlled with a computer that also records the output data.

The recorded output data includes peak deflections computed from velocity transducers
measured at the center of the load plate (D1) and at standard distances of 300 (12), 610
(24), 910 (36), 1,220 (48), 1,520 (60), and 1,830 mm (72-in.) (D2-D7) from the center of

the load plate.

The NDT data are analyzed to obtain modulus values for the various layers of the
pavement systems in accordance with the method described in EI 02C036 (EI 02C036
1997). The calculation procedure involves the input of the measured deflections, layer
thicknesses and material types into a layered elastic multi-layered backcalculation
computer program (WESDEF) to determine the surface, base(s) and subgrade modulus
values. The program determines a set of modulus values that provide the best fit

between the measured (NDT) deflections and the computed (theoretical) deflections.

Once the modulus of each layer is determined, modeled loads and the layered
elastic system model are used to calculate strains at critical locations. These calculated

strains are compared to criteria to determine the capacity of the pavement system (EI
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02C036 1997). As stated previously, if the pavement system is deemed capable of
supporting the design loads for the design life, the pavement is reported as being
structurally sound and is considered capable of sustaining the design traffic for a 20-year
design life. If the pavement is determined to be deficient, an overlay thickness is
calculated that will lower the calculated strains to within criteria guidelines. If this

overlay is constructed, the pavement is considered capable of supporting the design

traffic for the 20-year design life.

SURFACE CONDITION EVALUATION PROCEDURE

The pavement condition survey is a visual inspection of the airfield pavements to
determine the present surface condition (TM 5-826-6 1989). In an airfield evaluation,
the PCI and estimated distress quantities are determined for each feature (Shahin 1982)
by inspecting a selected number of sample units. Sample units are subdivisions of a
feature used exclusively to facilitate the inspection process by reducing the effort needed
to determine distress quantities and the PCI. The sample units for AC pavement features
are approximately 465 square meters. A statistical sampling technique is used to
determine the number and spacing of sample units to be inspected to provide a
95 percent confidence level in the determination of the PCI for the entire feature.
Sample units are chosen along the centerline of runways and taxiways. Aprons are
divided into a grid pattern, the sample units are numbered and the statistical sampling
plan indicates which samples should be surveyed. After the sample units are inspected,

the mean PCI of all sample units within a feature are calculated, and the feature is rated
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as to its condition: excellent, very good, good, fair, poor, very poor, and failed. The
distress information collected during an Army airfield pavement condition survey is
entered in to the Micro PAVER computer program. Micro PAVER is a pavement data
management tool that estimates the quantities of distress types for each feature after the
field data is entered. The Micro PAVER program can be used to calculate the PCI,
determine condition rating, and identify distress mechanism (load, climate, or other)
causing each type of distress observed. The distress mechanism is tied to the distress
type. Table 2 lists the distress mechanism associated with each distress type as defined
by Micro PAVER. The mechanism termed “other” is used for distress types for which a
cause is not readily apparent. Possible causes for distresses associated with the
mechanism of “other” include load, climate, construction problems, or combinations of

all three.

As discussed previously, Micro PAVER can be used to predict the future PCI
rating of a pavement feature througﬁ the use of a family curve model. This option is not
exercised in the Army airfield evaluation procedure. The family curve prediction
procedure does not provide the capability to predict changes in individual distress

quantities nor severities.




TABLE 2. AC Distress Types and Associated Mechanisms

Distress Type Numerical Mechanism
Designation
(1 2 3)
Alligator Cracking 41 Load
Bleeding 42 Other
Block Cracking 43 Climate
Corrugation 44 Other
Depression 45 Other
Jet Blast 46 Other
Joint Reflection Cracking 47 Climate
Longitudinal/Transverse Cracking 48 Climate
Oil Spillage 49 Other
Patching 50 Other
Polished Aggregate 51 Other
Weathering/Raveling 52 Climate
Rutting 53 Load
Shoving 54 Other
Slippage Cracking 55 Other
Swelling 56 Other

40
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CHAPTERI1V

DATA PRESENTATION AND ANALYSIS

The U.S. Army Engineer Waterways Experiment Station (WES) has been
conducting Army airfield evaluations since the 1940's. The most recent program was
initiated in 1982 under Project Operation and Maintenance, Army (O&M, A), "Army
Airfield Evaluation," to determine the physical properties, the load-carrying capacity for
various aircraft, and the general condition of the pavements at major U.S. Army airfields.
The results of these Army airfield evaluations are contained in Miscellaneous Paper
reports published by the WES. The WES has performed 159 Army airfield evaluations
during the fiscal years 1982 through 1997. Many Army airfields have been evaluated
two or three times. A full evaluation includes both a visual survey and a structural
survey; some evaluations involve only a visual survey. In either case, a visual survey
(PCI) is always performed. During the 1982 through 1997 fiscal years (inclusive), the
Army expended an average of $375,000 per year for a total of approximately 6 million
dollars to evaluate airfield pavements. In 1985, the Army spent approximately 10
million dollars on surfaced airfield pavement maintenance (Department of the Army
1985). In 1996, the total funds expended, by the Army on surfaced airfield pavement
maintenance was approximately 13 million dollars (Department of the Army 1996).

The average amount spent on evaluations has been approximately 3.25 percent of the

annual funds expended on maintenance of military airfield pavements.
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Since 1982, Army airfields have been evaluated using the PCI procedure and the
PAVER (the predecessor of Micro PAVER) or Micro PAVER data management system.
The use of the PCI procedure and Micro PAVER data management system has provided
for consistent collection and systematic storage of data pertaining to the surface
condition of Army airfields. This facilitates the analysis of pavement performance over

time. Data from these Army airfield evaluations were used for this study.

The first step in selecting a group of airfields to be included in this study was to
divide the continental United States into climatic zones. The Strategic Highway
Research Program (SHRP) divided the United States and Canada into four climatic
zones, wet freeze, wet-no freeze, dry freeze and dry-no freeze (Simpson et al 1994). The
same climatic zones were used for selecting a group of airfields for this study. Originally
five airfields were selected from each of the climatic zones based on location, size and
number of evaluations performed. During the reduction of data, one airfield in two of
the zones and two airfields in one of the zones were determined unsuitable. Table 3 lists
the airfields included in this study, the SHRP climatic zone in which they are located,
their location, and the dates of their evaluations. A list of the Army airfield evaluation
reports from which data were obtained for use in this study is provided in the references.

Figure 6 shows the location of the airfields on a map of the continental United States,

with the SHRP climatic zones delineated.



TABLE 3. Army Airfields Evaluated
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SHRP Army Airfield
Climatic Zone . .
Airfield Name Installation Name and Dates of
Location Evaluation*®
(1) ) ) (4)
Forney Ft. Leonard Wood, MO May-86, May-92
May-96C
Wet Freeze
McCoy Ft. McCoy, WI Aug-85, May-93
Muir Ft. Indian Town Gap, PA Apr-87, Nov-93
Phillips Aberdeen PG, MD Jul-86, Oct-93
Wheeler-Sack Ft. Drum, NY Aug-85, Oct-93
Cairns Ft. Rucker, AL Jun-85, Sep-89C, Mar-92
Wet-No Hunter Ft. Stewart, GA Jui-82, Jul-86C, Nov-93
Freeze Redstone Redstone Arsenal, AL Apr-87, Nov-93
Simmons Ft. Bragg, NC Jun-85, Sep-89C, Nov-93
Butts Ft. Carson, CO Apr-84, Apr-89C, May-93
Dry Freeze Marshall Ft. Riley, KS Sep-83, Sep-87C, Mar-94
Selah Yakima TC, WA Oct-85, Apr-84
Biggs Ft. Bliss, TX Mar-84, Aug-89C, Mar-92
Dry-No
Fgeze Hood Ft. Hood, Tx Mar-84, Jun-88C, Dec-93
Libby Ft. Huachuca, AZ Mar-87, Mar-95
Los Alamitos Los Alamitos, CA Feb-85, Jun-90, Feb-93

*Note: Those dates followed by a “C” indicate that only a visual condition survey was performed,
no structural evaluation was performed for that evaluation.
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EVALUATION DATA SUMMARY
The following paragraphs present a summary of the data contained in the

evaluation reports that were included in this study.

Condition Survey Data

The data from the condition surveys for all the asphalt concrete (AC) pavement
features at each airfield were compiled in spreadsheet format for data analysis purposes.
Appendix A contains tables listing the distress data for each feature at all airfields
included in this study. In order to summarize the data, a weighted PCI for each airfield
was determined. The weighted PCI required that each feature PCI be adjusted by
multiplying the PCI of the feature by a ratio of the area of that feature to the total area of
AC pavements surveyed at the airfield. The weighted PCI for an airfield was then

calculated as the sum of all adjusted feature PCIs (see Equation 1).

Weighted Airfield PCI = X ar [ PCIr ( Areap/ 24 Arear )] (1)
Where:

> ar = Sum of the individual feature PCI weights for the entire airfield

PCI¢ = The PCI for a particular feature

Arear = The area of a particular feature

> a Arear = The sum of areas of all the features for an airfield
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A weighted PCI was used so that a small feature would not influence the overall
PCI to the same degree as a large feature, which would be the case if a simple average of
the PCI values of all the features of an airfield were determined. Appendix B contains
tables with the PCI and weighted PCI for every feature and airfield, respectively, for each
evaluation included in this study. Similarly, weighted distress type mechanisms were
determined for each airfield to give an overall percentage of distress attributable to the
three distress mechanism types. Instead of using PCI in equation 1, the percentage of
distress type mechanism was used, resulting in a weighted percentage of distress type
mechanism for an airfield. The three distress mechanisms are as defined in Micro
PAVER (climate, load, and other) and shown in Table 2. For some of the airfields, the
sum total of percentage of distress type mechanism does not equal 100. This is because
if a feature had a PCI of 100, it had no distress mechanism, but it was included in the
weighted PCI average and the weighted distress mechanism type determination. The
percent distress mechanisms for the distress types observed on each feature are presented
in the tables in Appendix A. Table 4 lists the average weighted PCI and distress

mechanism type for each airfield included in this study.



TABLE 4. Summary of Weighted PCI and Weighted Distress Mechanism

Airfield Survey Date  Weighted PCl Distress Mechanism
Load Climate Other

(1) 2) (3) (4) (5) (6)
Biggs 1992 30 0 100 0
1989 31 0 100 0

1984 50 3 93 4

Butts 1993 36 12 88 0
1989 40 3 97 0

1984 80 10 90 0

Cairns 1992 65 1 96 3
1989 59 6 85 9

1985 81 7 84 5

Forney 1996 33 34 64 2
1992 64 0 100 0

1986 66 5 95 0

Hood 1993 73 7 89 1
1988 79 2 87 1

1984 84 0 60 3

Hunter 1993 75 - 2 95 3
1986 88 2 89 4

1982 74 0 90 5

Libby 1995 62 10 83 7
1987 68 5 62 7

Los Alamitos 1993 75 12 27 11
1990 56 30 52 13

1985 54 10 79 11

Marshall 1994 33 0 69 31
1987 41 0 65 35
1983 43 0 88 12

McCoy 1993 91 8 87 5
1985 75 6 87 7
Muir 1993 56 13 69 19
1987 66 14 67 19

Phillips 1993 63 6 86 8
1986 72 0 86 4

Redstone 1993 91 18 71 11
1987 42 0 63 37

Selah 1994 51 17 82 1
1985 69 26 72 2
Simmons 1993 95 10 37 18
1989 61 1 77 0

1985 78 0 97 3

Wheeler-Sack 1993 90 10 21 1
1985 63 5 83 12
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Construction Survey Data

Similarly to the condition survey data, the construction data from all of the
airfields evaluated were compiled in spreadsheet format. Appendix C contains tables
listing the construction data from all the airfields surveyed. The construction data

compiled consists of layer thicknesses, material types, and construction dates.

The backcalculated asphalt concrete layer moduli data are not presented in
Appendix C because the values listed in the reports are not backcalculated values. The
Army airfield evaluation procedure requires the backcalculation of moduli values for all
the layers in the pavement system, but then uses assumed AC modulus value based on
temperature data. The evaluation procedure uses temperature data from the hottest and
coldest months at the airfield being evaluated to determine modulus values (EI 02C036
1997). This reason for assuming modulus values is to evaluate the pavement at the |
critical conditions when considering AC rutting and low temperature cracking. The AC
modulus value determined for the hottest month is intended to consider the potential for
rutting of the asphalt, and the AC modulus value determined based on the coldest month

is intended to consider the potential for low temperature cracking.

Climatic Survey Data
The airfields were selected based on location according to the zoning established

for the SHRP program. The purpose of considering the SHRP climatic zones was to




49

insure that a range of climatic conditions were represented. Actual environmental data

were used for any analyses performed that considered climatic data.

Climatic data are collected and included in most of the evaluation reports.
However, the consistency and types of data collected varied tremendously. In order to
provide the same quality of data at each site for analysis purposes, data were collected
from the nearest National Oceanic and Atmospheric Administration (NOAA) weather
station site. Table 5 presents the NOAA data, which was used for all analyses that used

climatic data NOAA 1998, NSRDB 1998).

The weather data shown in Table 5 are 30-year averages. The solar radiation data
is reported in watt-hours per square meter. The sky cover data indicates the average
daily percent of sky cover determined during daylight hours. The precipitation data is
the average monthly precipitable water in centimeters. The heating degree days and
cooling degree days are computed from each days mean temperature (the maximum
temperature plus the minimum temperature divided by two). Each degree that a day’s
mean temperature is below or above 18 degrees C is counted as one heating or cooling
degree day, respectively. The average wind speed is presented in meters per second

regardless of the direction of the wind.




TABLE 5. NOAA Weather Data

Airfield Solar Sky Cover Precipitation Heating  Cooling Wind

Radiation SC H20 Degree  Degree Speed
SR Days Days WS

HDD CDD

(Wh/mz) (tenths) (cm) (degC) (degC) (m/s)
(1) (2) 3) 4) %) (6) ()
Biggs 5732 3.8 1.37 1475 1180 34
Butts 4690 5.3 1.04 3524 270 4.4
Cairns 4620 57 2.52 1241 1273 29
Forney 4364 5.7 1.89 2570 787 44

Hood 4870 5.3 2.18 1193 1618 5

Hunter 4612 59 2.64 1038 1391 34
Libby 5700 3.8 1.54 908 1646 3.9
Los Alamitos 4946 46 1.74 734 388 3.5
Marshall 4300 5.8 1.88 2918 775 4.3
McCoy 3872 6.3 1.59 4151 447 3.8
Muir 3938 6.3 1.76 2971 566 34
Phillips 4048 5.9 1.87 2617 696 3.9
Redstone 4368 6.4 2.21 1824 946 3.6
Selah 4097 5.9 1.13 3286 270 3.3
Simmons 4395 5.8 2.13 1974 839 3.5
Wheeler-Sack 3721 7.1 1.59 3786 308 4.2
Mean 4570.13 5.50 1.83 2161.60 872.80 3.78
Std Dev 563.58 0.82 0.46 1067.64  460.44 0.55
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EVALUATION OF SURVEY DATA

The following paragraphs present analyses of the summarized data. The results
of these analyses provided direction for the remaining part of the study. However, before
any statistical analyses were performed, a matrix-type experimental design was studied
to determine if any treatment blocks were deficient. A significant deficiency in any

blocking factor could skew analyses performed on the data.

The parameters considered in the experimental design included the following: all
of the environmental parameters, the pavement class (primary or secondary), pavement
age, asphalt concrete thickness, and subgrade type (fine or coarse grained). The
environmental parameters were considered by taking the average of each parameter and
classifying an airfield as high or low for that parameter depending on whether it had a
greater or lesser value compared to the mean. All of the features at a particular airfield
were classified in the same category for each environmental parameter. The
abbreviations for the environmental parameters are defined in Table 5. The pavement
class is defined by the Army (AR 420-70) and is based on the usage of the pavement
feature. Generally, all runways and important taxiways are primary pavements and all
aprons and auxiliary taxiways are secondary pavements. In the tables in Appendix B, all
of the runway pavements, designated by an “R” are considered primary; all of the aprons,
designated by an “A” are considered secondary. For the taxiway pavements, all of them
should be considered secondary unless denoted by a “-P” in the feature identification in

the tables in Appendix B, in which case they were considered primary pavements. The
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pavement age was classified as new, for those pavements constructed in 1980 or after, or
old, for those pavements constructed prior to 1980. The asphalt thickness was divided
into groups of thin (100 mm or less in thickness), or thick (greater than 100 mm). Silt or
clay subgrades were classified as fine. Sand or gravel subgrades were classified as

coarse.

Table 6 presents a summary of the experimental design matrix. The values in
each block correspond to the number of features that met the criteria of that block. For
example, the block meeting the criteria of Lo HDD (indicating the heating degree days
were less than the average for all the sites) and Hi SC (indicating the percent of sky
cover was greater than the average for all the sites) has a value of 68. This means that 68
of the total number of features included in this study met the criteria of Lo HDD and Hi
SC. There were a total of 281 features included in this study. From inspection of Table
6, it appears that there are not any significant deficiencies that may skew the data

analyses when all the available data are used.
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Condition Survey Data Analysis

The survey data were evaluated by considering the results of fitting a general
linear statistical model for the survey data (dependent variables), with evaluation period
and climatic zone as the grouping factors. These analyses were performed to determine
if there were significant differences between evaluation periods and climatic zones. The
data analyzed included PCI and distress mechanisms (climate, load, and other). The data
for all features of all airfields and all evaluations were included in these analyses. Table
7 provides a summary of the results from fitting general linear statistical models. The P-
values shown in Table 7 indicate the probability of incorrectly rejecting the null
hypotheses. The null hypothesis considers the means of groups of data analyzed not
significantly different. In those cases where the null hypothesis was accepted, either the
interactions between grouping factors were not considered significant or the means for
treatment within a grouping factor were not considered significantly different. The
analyses were performed separately for primary and secondary pavements because the

Army has different condition requirements for primary and secondary pavements.
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TABLE 7. Summary of General Linear Statistical Model Results

Interaction Evaluation Period Climatic Zone
Aspect P-value  AcceptH, P-Value  Accept H, P-Value  AcceptH,
) (2) 3) 4) (5) (6) (7)

PCI-P 0.06 X 0.00 0.00
PCI-S 0.32 X 0.20 X 0.00
Climate-P 0.09 X 0.01 0.00
Climate-S 0.18 X 0.70 X 0.80 X
Load-P 0.65 X 0.02 0.01
Load-S 0.45 X 0.81 X 0.77 X
Other-P 0.65 X 0.48 X 0.00
Other-S 0.10 X 0.68 X 0.08 X

Notes: H, = null hypothesis = grouping factor means are equal or grouping factors have no
interaction. P-Value = probability of incorrectly rejecting H,.

From Table 7 it can be seen that interactions between evaluation period and
climatic zone were not significant at the 95 percent confidence level for any of the
aspects analyzed. Therefore, the results for main effects (the evaluatioﬁ period and the
climatic zone) can be considered. If the interactions had been significant, it would have
been necessary to analyze the data separately for each evaluation period and climatic

zone.

Examining the results of evaluation period shown in Table 7 indicates that in
only three of eight aspects, time had a significant affect on the evaluation results.
Climate was significant in five out of eight of the aspects examined. For all aspects a 95
percent confidence level was considered. The fact that time did not have a significant

influence for many aspects would indicate that the airfields are being maintained at a
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fairly constant level over time. This is not particularly unexpected since the Army has a
minimum standard for maintaining their airfields. The fact that climate was a significant
factor for most of the aspects evaluated could be caused by many things. Airfields in
some climates may be more susceptible to particular distresses. Some climates may have
more important airfields, from a strategic viewpoint, resulting in greater funding and a |
subsequent better overall condition of those airfields. The important point is that climate
is playing a roll in the condition of the airfields and thus should be a factor considered in

any performance prediction procedure developed.

Reviewing Table 4 reinforces the observation that climate should be significant.
From Table 4 it is apparent that most of the distresses observed on the Army airfield
pavements are attributable to climate related mechanisms. The next logical step was to
determine the most prevalent distress types observed on Army airfield pavements. Table
8 lists the distress types, severity levels, and densities for the most prevalent distresses
observed. The density of distress is the percent of all the flexible airfield pavement area
at an installation that exhibited that distress at that severity level. Only those distresses
found with a density of 5 percent or greater are listed in Table 8. The only distress types
found consistently at a density of 5 percent or more were block cracking (43),

longitudinal and transverse cracking (48), and raveling and weathering (52).



TABLE 8. Summary of Significant Distress Types

Airfield Survey Year Distress
Type Severity Level Density (%)
(1) ) (3) (4) (5)
Biggs 1984 Block Cracking L 24
Block Cracking M 60
1989 Block Cracking M 29
Block Cracking H 66
1994 Block Cracking M 36
Block Cracking H 64
Butts 1989 Block Cracking L 10
L/T Cracking L 6
Ravel/Weather H 65
1993 Block Cracking L 33
Block Cracking M 16
Block Cracking H 14
Ravel/Weather H 65
Cairns 1985 Block Cracking L 30
1989 Block Cracking L 25
Block Cracking M 9
Ravel/Weather L 50
1992 Block Cracking L 30
Block Cracking M 10
Ravel/Weather L 48
Ravel/Weather M 9
Forney 1986 L/T Cracking L 5
1992 Block Cracking L 100
1996 Block Cracking L 52
Block Cracking M 12
Ravel/Weather L 70
Hood 1988 Ravel/Weather L 44
1993 Ravel/\Weather L 56
Hunter 1982 Block Cracking L 24
Block Cracking M 24
1992 Block Cracking L 38
Libby 1987 Block Cracking M 30
Ravel/Weather L 9
Ravel/Weather M 24
1995 Block Cracking L 13
Ravel/Weather L 22
Los Alamitos 1985 Block Cracking L 18
Block Cracking M 27
1980 Alligator Crack M 7
Block Cracking M 29
Ravel/Weather L 27
1993 Block Cracking M 9
Ravel/Weather L 11
Marshall 1983 Block Cracking M 99
1987 Block Cracking M 100
1994 Block Cracking M 86
Block Cracking H 10
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TABLE 8. Continued
Airfield Survey Year Distress
Type Severity Level Density (%)

(1 (2) (3) (4) (5)
McCoy 1985 L/T Cracking L 10
Muir 1987 Block Cracking L 8
Block Cracking M 8

1993 Block Cracking L 7

Block Cracking M 22

Phillips 1986 Block Cracking L 13
Block Cracking M 15

Ravel/Weather L 40

1993 Block Cracking L 22

Block Cracking M 14

Ravel/Weather L 36

Redstone 1987 Block Cracking L 89
Polished Agg — 86

Ravel/Weather L 12

Selah 1985 L/T Cracking L 8
1994 Block Cracking L 7

Block Cracking M 8

L/T Cracking M 6

Simmons 1985 Block Cracking M 24
1989 Block Cracking M 28

Ravel/Weather L 41

Wheeler- 1985 Block Cracking L 48
Sack 1993 Block Cracking M 5

The distress types of block cracking (43), longitudinal/transverse cracking (48)
and raveling/weathering (52) are associated with environmental causes as shown in
Table 2. A discussion was presented on the causes of block cracking in Chapter 1I.
Raveling/weathering could result from many of the factors that cause block cracking;
aging of the asphalt cement in particular. In addition, raveling/weathering may be related

to construction or aggregate problems. The longitudinal/transverse cracking are also



59

normally due to environmental influences and may be the initial stages of block
cracking; on occasion they may be structural in nature in the very early stages. Because
there were few data showing structural problems as discussed previously, it would not be
unreasonable to assume that most of the longitudinal/transverse cracking is caused by

environmental factors as well.

DISCUSSION OF DATA ANALYSIS

The results of the data analysis indicated that the primary distress types were due
to climate related mechanisms. Because Army airfield pavements are generally designed
to support deployment aircraft loadings, but the pavements are seldom subjected to that
level of loading, it is not surprising that structural distresses are not predominant. As
discussed previously, day-to-day operations on most Army airfields are light in terms of
number of operations and load levels when compared to the expected number of

operations and load levels considered for deployment operations.

A method to predict when individual distress types will reach critical levels for
individual airfield pavement features would provide Army installations with a useful
tool. This tool could be used for projecting when funds would be needed and the types
of maintenance and repair that would be required to maintain their airfield pavements
within the criteria established by the Army (AR420-70). Although the Army only
requires that the airfield pavements be maintained at established PCI levels, projecting

PCI alone can not provide the Army installation with information on the types and
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severity level of distresses that would be expected in the future. By providing
information on expected types and severity level of distresses, installations can more
accurately plan the work effort that will be required and the funds necessary to maintain

their airfield pavements at the required levels.

The current method for projecting PCI, which is not used, could be used at
Headquarters level for determining overall expected funding requirements. Local
installations need guidance on when and what types of work will be required to maintain
their airfield pavements at the levels established by the Army. A method should be
developed for predicting individual distress type growth rather then just the PCI to
provide the local installations with a tool that can be used to predict future work

requirements.
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CHAPTER V

MODEL DEVELOPMENT

After summarizing the current evaluation procedure used by the Corps of

Engineers and presenting a summary and analysis of the performance data, it seems

apparent that Army installations would benefit from an individual distress type

development prediction method for flexible Army airfield pavements. A distress

prediction model would provide local installations with information on when pavement

maintenance, repair, and construction would be required, and when the funds would be

needed. Although many models exist for predicting various aspects of pavement

performance, the development of improved performance models is a necessary and

worthwhile task (Lytton 1987). A quote from a paper presented at the 2" North

American Conference on Managing Pavements provides support for the concept of

developing a distress prediction model for flexible Army airfield pavements:

Finally, the development of performance prediction models should be a
continuing task, aimed at continual improvement and better use of the available

data. (Lytton 1987)
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Currently, the distress data collected through the Army airfield evaluation
program are not used in any manner for predicting pavement performance. The
development of a distress prediction model will exploit this pavement performance data

in a manner that benefits the Army.

MODEL DEVELOPMENT

Moody (Moody 1997) describes a general framework for pavement performance
model development using the long term pavement performance (LTPP) database from
SHRP. The following steps listed for developing an empirical model are based on the

LTPP model framework:

Step 1: Identify elements for analysis

Step 2: Identify independent (prediction) variable(s)

Step 3: Identify dependent (response) variable(s) (performance variables)
Step 4: Relate independent and dependent variables

Step 5: Compare actual versus predicted performance

Step 6: Calibrate model with field performance

Step 7: Establish model reliability

The procedure presented by Moody offers a logical stepwise model development
procedure that will be used in the remaining portion of this study. The remaining part of

this chapter will focus on the model development steps outlined above.
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Step 1: Identification of Element for Analysis

The first step in developing the model requires that the elements for analysis be
identified. The ultimate goal of this model is a prediction, in terms of years, of when a
particular distress type will reach the critical distress density level for a particular feature.
The critical distress density level is related to the deduct value that results in a PCI that
reaches the preset limits established by the Army. Therefore, the elements for analysis
will be the individual distress types for individual pavement features. The development

or growth of each distress type will be predicted independently.

Step 2: Identification of Prediction Variables

The second step of the model development procedure requires that the
independent variables be established. To achieve the goal of predicting distress density
growth versus time, it is necessary to develop a relationship in terms of an equation that
will predict the expected performance or growth of individual distress types. The
performance curve should be a function of those parameters that affect the development
of lﬁarticular distress types. Therefore, those distresses related to environmental
mechanisms will require a relationship with environmental prediction variables. Those
distress types that are the result of load mechanisms will require a relationship with load
variables. Those distress types classified as “other” may require relationships with
variables related to load, environment, or other factors that can not be easily identified.
An example of these “other” factors that are not easily identifiable would be construction

procedures.
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The three distress types investigated in the remainder of this study include block
cracking, longitudinal/transverse cracking and raveling/weathering. All three of these
distress types are considered to be due to climatic mechanisms. Therefore, for all three
of these distress types, all of the available environmental data will be considered for use
as prediction or independent variables. In addition, for all three distress types, the
following list of available independent variables will be considered because they could
have an impact on the development of these distress types: construction dates, asphalt
thickness, whether the subgrade is fine or coarse grained, and whether the base course is
stabilized. Finally for the distress type of longitudinal/transverse cracking, the load and
pass levels used for evaluation will be considered since longitudinal cracking may be

load related.

STEP 3: Identification of Performance Variable

The third step in the model development requires the selection of the dependent
or response variable. As stated previously, the ultimate goal of the model is to predict, in
terms of years, when a particular distress type will reach the critical distress density level
for a particular feature. Therefore the performance parameter being sought is the distress

density of individual distress types on individual features.

The PCI procedure for asphalt concrete airfield pavements uses 16 distress types,
as listed in Table 2. Most of these distress types are defined at three discrete severity

levels: low, medium, and high. The discrete severity levels are a convenience to aid in
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the collection of the performance data. In general, the severity levels are a function of
crack width or some other measurable attribute of the distress. Over time, as the density
of a distress at a particular severity level increases the corresponding deduct value
increases. Appendix D.presents the deduct values versus distress density curves for each
distress type. While monitoﬁng distress growth, the discrete classification of the severity
level may change. As an example, as cracks grow and become wider, their severity level
classification increases from low to medium and then ultimately to high. However, all of
the cracks on a pavement feature will not necessarily deteriorate at the same rate. This
results in fluctuating amounts of individual distress type densities at various severity
levels. The fluctuating quantities, as opposed to a continuous increase in distress
density, makes it difficult to model the development of a distress at individual severity

levels.

In reality, total distress quantity increases continuously; although, the rate may
vary by season or severity of climate over time. Therefore, a continuous function will be
proposed for predicting the growth rate of individual distress types. In order to fit the
field data to the form of the proposed equation, relationships were developed for
“collapsing” the three severity levels of deduct values versus distress density curves for
each distress type into one curve. The medium severity level curve was selected as most
appropriate, and the high and low severity level curves were converted to medium

severity level. The data used for collapsing the high and low severity curves to the
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medium severity level curve were the actual tabulated deduct values versus distress
density curve values used in Micro PAVER. Table 9 presents a summary of the

regression equations developed and the R? achieved.

TABLE 9. Summary of Conversion of Low and High Distress Densities to

Medium Severity Level
Distress Type Conversion from to Regression Equation R* (%)
(1) (2) (3) 4)
Alligator Crack Low to Medium .0001 DD + .2866 DD 99
Alligator Crack High to Medium .1949 DD? + .8275 DD 99
Block Crack Low to Medium .0003 DD? + .3306 DD 99
Block Crack High to Medium -.0899 DD? + 6.2481 DD 99
Corrugation Low to Medium .0008 DD? + .2452 DD 99
Corrugation High to Medium -.0174 DD? + 2.8687 DD 99
Depression Low to Medium .0004 DD? + .3433 DD 99
Depression High to Medium -.0079 DD? + 2.1137 DD 99
Joint Refl Crack Low to Medium .0008 DD? + .1586 DD 99
Joint Refl Crack High to Medium 4735 DD?- .1873 DD 99
L/T Crack Low to Medium -.0027 DD? + .4692 DD 99
L/T Crack High to Medium .1137 DD? + 1.5009 DD 99
Patching Low to Medium -.0007 DD? + .2667 DD 99
Patching High to Medium .0067 DD? + 2.5509 DD 99
Ravel/Weather Low to Medium .0006 DD? + .1697 DD 99
Ravel/Weather High to Medium -.1835 DD? + 9.7211 DD 99
Rutting Low to Medium .0006 DD? +.1736 DD 99
Rutting High to Medium -.0084 DD? + 4.1155 DD 99
Shoving Low to Medium -.0002 DD’ + .1789 DD 99
Shoving High to Medium -.0097 DD? + 4.2917 DD 99
Swell Low to Medium -.00001 DD? + .2272 DD 99
Swell High to Medium -.042 DD* + 4.7773 DD 98

Note: The DD value in each equation is the distress density being converted from. The result of
applying each regression equation is the converted medium severity level distress density for that
particular distress type.
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The values of the PCI based on the converted distress densities were compared to
the original PCI values for many features. Features with single and multiple distress
types were included. For those features with multiple distresses with deduct values
greater than 5 percent, the standard PCI deduct correction procedure was followed (TM
5-826 1989). The results of some features evaluated are shown in Table 10. Although
Table 10 is just a sample, it is apparent that in general the PCI resulting from the
converted data agrees reasonably well with the actual PCI. Only one of the converted
PCI values shown was greater than 5 PCI points from the originally calculated PCI. Of
28 total features reviewed the mean of the absolute difference between original PCI and
converted PCI was 2.5 with a standard deviation of 1.5, on a scale of 100. The range of

absolute differences was 0 to 7.

Based on the acceptable agreement between converted PCI and actual PCI values,
the converted-to-medium severity distress density level for each distress type will be

used as the performance variable for the model being developed.
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TABLE 10. Sample of Converted PCI to Actual PCI
Airfield Survey Year Feature PCI Number of Conv PCI Conv PCI - PClI

Distress Types

(1) (2) (3) (4) (5) (6) ()
Biggs 1989 T6E 64 1 64 0
Butts 1984 R11E 94 1 91 -3
Butts 1984 R3E 90 1 87 -3
Butts 1984 R6E 87 1 85 -2
Hood 1988 A12E 98 1 98 0
Hood 1988 T5E 78 1 78 0
Redstone 1994 R2E 94 1 92 -2
Simmons 1993 T13E 79 1 74 -5
Butts 1984 T1E 61 2 63 2
Butts 1993 R3E 69 2 74 5
Cairns 1985 T3E 78 3 71 -7
Cairns 1985 AQ9E 57 2 62 5
Caimns 1989 R6! 68 4 67 -1
Cairns 1992 A10E 67 2 66 -1
Forney 1986 R3A 65 2 60 -5
Forney 1986 R4A 72 2 67 -5

Following the determination of the independent and dependent variables, an
equation for modeling the growth of individual distress densities was selected. The form
of the equation should be selected prior to the analysis of the data to ensure that it
adheres to the known boundary conditions and expected growth behavior of pavement

distresses (Lytton 1987).
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An explanation for the form of equation selected for modeling distress density
growth and the attributes of the curve that will be exploited for predicting distress
density growth is warranted. Because cracking and other distress development does not
occur all at once, it has been represented in mechanics as the result of a stochastic
process (Zollinger and McCullough, 1994). Making use of this knowledge indicates that
equations used in probability are appropriate for use in describing the performance of
pavements in terms of distress development (Lytton 1987, Zollinger and McCullough,
1994). Many forms of probability density could be selected for use in determining the
performance relationships such as the normal, log normal, Weibull or Gumbel. For this
model, the Weibull and Gumbel density functions were examined and the Gumbel
density function was selected for the following reasons (Note: an analysis similar to that
presented here for the Gumbel distribution was performed with the Weibull distribution

and the results are shown in Appendix E):

1) The Gumbel distribution has a minimum value of zero, which coincides
with the initial boundary conditions (from prior knowledge, it is known
there cannot be less than zero percent distress). The form of the Gumbel
distribution is the Type II exponential form as classified by Gumbel (Ang
and Tang 1990).

2.) The rate of distress development can be negative, positive or constant.
The negative case would not be appropriate for modeling pavement
distress development. However, the nature of the distribution provides
needed flexibility in data fitting.

3) The cumulative distribution function reaches an asymptote as a final
boundary condition, which coincides with the terminal boundary
conditions (This agrees with prior knowledge based on observed field
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performance and logic. The amount of distress cannot develop to infinity,
there is a limit to the amount that can be observed on a pavement feature).

4.)  The results of the regression analyses between the Gumbel parameters and
the independent variables provided the best fit.

The Gumbell probability density function (PDF) has the form:

fy="PBp)® Vexp(- (p/H)), t>0,p20,p20 @)

Where:
t=time
p = Gumbel scale parameter

B = Gumbel shape parameter

The cumulative distribution function (CDF) is obtained by integrating the PDF

and can be expressed as follows:

F(t)= exp(-(p/t)®) 3)
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The Gumbel CDF ranges from zero to one. By multiplying the CDF by a factor,
it can be made to range from zero to any value requi‘red. A multiplying value of 100 is
selected for this study because 100 is the maximum percent of distress density
achievable. Therefore the distress density at any given time will be a function of the

Gumbel CDF as shown in Equation 4.

DD, = 100 [ exp(- (p/t))] )]
Where:

DD, = the distress density of a particular distress at some time

Figure 7 shows representative Gumbel CDF curves. As can be observed in
Figure 7, the initial slope and mid-portion slope can fit almost any expected rate of
distress development. If the form of the equation is examined, it is noticed that the
factor adjusts the slope or shape of the curve at the inflection point, which is at
approximately 37 percent. The p parameter is referred to as the scale parameter because
it adjusts where the inflection point is located along the time axis. A small value of p
means the inflection point is close to the origin, while a large value of p places the
inflection point a great distance from the origin. The value of p is approximately
equivalent to the time in years for the distress density (DD) to reach 37 percent, the

inflection point.
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FIG 7. Examples of Gumbell CDF Curves (p=10; p= 0.5, 2, and 10 as shown)

Step 4: Relate Independent and Dependent Variables

Step 4 of the model development involves fitting field data to the performance
equation to determine the appropriate shape and scale parameters. The shape and scale
parameters are adjusted until the Gumbel curve matches the field data. Shape and scale
parameters were determined for the three primary distress types found; block cracking,
longitudinal/transverse cracking; and raveling/weathering. The curve fitting was done by
hand; Appendix F provides a detailed explanation of the procedures and method used for
determining the shape parameters. Briefly, the shape and scale parameters were adjusted
until the CDF curve fit the observed field performance. Figure 8 shows an example of a

plot of field data from two features with the fitted CDF curves.
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FIG 8. Example of Field Data Plotted on Model Curves

Before the field data for a particular feature could be used for fitting to the form
of the equation, there were some criteria that had to be met. The data criteria were: a
feature had to have two PCI levels greater than the critical level and there had to be a
known construction date for the last overlay or initial construction. Data from features
that met the criteria were fitted to the Gumbel CDF curve to determine appropriate shape

and scale parameters.
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Table 11 shows the results of the shape parameter determinations for all features

that met the criteria previously discussed for the distress type of block cracking. Tables

12 and 13 show the Gumbel shape parameters determined for features with

longitudinal/transverse cracking and raveling/weathering, respectively.

TABLE 11. Results of Gumbel CDF Parameter Determinations for Block Cracking

Airfield Feature = Secondary/ p B
Primary

1) (2) (3 (4) (5)

Biggs ASE S 6 6
Cairns T8E S 25 1.2
Cairns T11E S 35 1.3
Hunter R5E P 18 1.2
Hunter T1E P 20 1.2
Hunter T8E P 19 0.5
Hunter T9E P 20 14
Wheeler-Sack T2E S 9 6




TABLE 12. Results of Gumbel CDF Parameter Determinations for

Longitudinal/Transverse Cracking

75

Airfield Feature = Secondary/ p B
Primary

Q) (2) 3 (4) (5
Butts R2E P 40 .65
Butts R3E P 40 .65
Butts R4l P 40 .65
Butts R5E P 40 .65
Butts R6E P 40 .63
Cairns Rél P 60 77
Cairns T1E P 60 77
Caimns TAE P 80 .82
Cairns T8E S 50 73
Cairns T9E S 50 .82
Caims T10E S 50 .82
Cairns T12E S 80 .83
Cairns AGE S 60 .76
Cairns A10E S 50 72
Cairns A11E S 65 73
Cairns A12E S 80 77
Hood A19E S 60 74
Hood A21E S 80 .78
Hood A8E S 60 74
Hood T6E S 60 71
Hunter TOE P 50 74
Hunter ATE S 50 72
Hunter A8E S 90 71
Hunter A19E S 60 .73
Hunter A30E S 50 74
Hunter T6E S 60 .76
Hunter T10E S 55 .75
Phillips R2i P 80 72
Phillips R4l P 50 74
Phillips R5I P 60 .76
Phillips T2E P 60 74
Phillips T4E S 80 75
Selah R8E P 100 .60
Selah A1E S 100 .62
Simmons R1E P 100 .64
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TABLE 13. Results of Gumbel CDF Parameter Determinations for

Raveling/Weathering

Airfield Feature = Secondary/ p B

Primary
(M (2) 3) 4) (8

Cairns T4E P 15 3
Cairns TSE S 16 2
Cairns T10E S 15 3
Cairns T11E S 14 5
Cairns A11E S 12 0.55
Hood A19E S 13 1.5
Hood T3E S 28 06
Hood T5E S 21 0.5

Figure 8 showed an example of field data plotted against the Gumbel CDF curve.
Appendix F contains additional example plots of the field data fitted to the Gumbel CDF
curve for each of the distress types analyzed. In addition, Appendix F contains Tables
with the converted distress density data that was used to determine the p and 8

parameters for all the features listed in Tables 11, 12 and 13.

For block cracking, as observed in Table 11, only 8 features at 4 airfields met the
criteria required to determine a p and B parameter. The features are located at Biggs,
Cairns, Hunter, and Wheeler-Sack. Table 12 shows that 35 features at 7 airfields met the

criteria for determining p and P for the distress type of longitudinal/transverse cracking.
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Table 13 shows that 8 features at only 2 airfields met the criteria for determining the p
and P for the distress type of raveling/weathering. Out of 281 features included in this
study, the number available for analysis was greatly reduced. There are many reasons
few features meet the criteria required to be included in the model development. One
reason for this is because some features never exhibited the distress type under
consideration for all the evaluation periods. Other features had either no PCI values or
only one PCI value above the critical value. These pavements with consistently low PCI
values did not provide any insight into the development of the distress over time. Some
of these pavements had 100 percent of the distress typé under consideration at each
evaluation (a flat performance curve). Finally, many of the pavements had a rise in PCI
due to maintenance procedures performed between evaluations. All of these factors
reduced the number of useable features to those shown in Tables 11, 12 and 13. Table
14 summarizes the total number of features that exhibited each distress type, out of the

281 features included in this study, categorized by why they were rejected from the

model development.
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TABLE 14. Summary of Features Available for Model Development

Reason for Removel Model

from Model Block Cracking Longitudinal/Transverse Raveling/Weathering
Development Cracking

Total available 84 172 58
All PClI values < critical 25 13 6
value

Less than 2 PCI values 8 39 23
above minimum

Distress density = 100 14 14 10
through time

Maintenance applied 29 71 11
between evaluations

Total remaining for 8 35 8

mode! development

Because the shape and scale parameters are related to the shape of the curve that
was fitted to the field data, they should also be related to factors that control the growth
of the distress density. Regression analyses were performed to relate the shape and scale
parameters with appropriate independent variables. Before regression analyses

commenced, it was helpful to determine if any correlation existed between the
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independent variables and the dependent variables (p and B). Tables 15, 16 and 17
provide the results of the correlation analyses for the independent and dependent
variables for the distress types of block cracking, longitudinal/transverse cracking and
raveling/weathering, respectively. The abbreviations for the climatic independent
variables were defined in Table 5. The other independent variables are abbreviated as
follows: original construction date, OC; most recent construction date, RC; asphalt
concrete thickness, AC; fine or coarse grained subgrade, FC; stabilized or non-stabilized
base, SN; evaluation load level, EL; and evaluation pass level, EP. The climatic and
construction data are presented in Appendix C, and the load and pass level data are
presented in Appendix G for those features used in the regression analysis. A summary
of the regression data for each distress type is shown in Appendix G. Only those
independent variables that were appropriate as discussion in step 2 were considered in
the regression analyses. Some of the appropriate variables were omitted from the

regression analyses for reasons discussed in the following paragraphs.
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The first observation made from the correlation analyses was that the dependent
variables, p and B, were negatively correlated to each other for the distress type of block
cracking. The inverse correlation of these parameters indicates that as the value of one
variable decreases the other increases. This observation indicates that any independent
variable that effects one parameter, should have the opposite effect on the other
parameter. Also, any parameter deemed appropriate for inclusion with one variable was

used for analysis with both parameters.

Additional observations from the correlation analyses indicate that solar radiation
(SR) and sky cover (SC) have a high inverse correlation in all cases. If there is a great
deal of sky cover, it is expected that the amount of solar radiation would be low.
Likewise, heating degree days (HDD) and cooling degree days (CDD) are highly
inversely correlated. Areas that have a large number of heating degree days would not
be expected to have a large number of cooling degree days. In order to limit possible
difficulties due to covariance, a single parameter from each of these pairs of correlated
parameters were selected for regression analyses. From Table 5, sky cover and cooling
degree days were shown to have larger values of coefficient of variation than their
respective correlated variables. A larger spread in the data should help in any regression
analyses. Therefore, solar radiation and heating degree days were eliminated from the
regression analyses. Sky cover and cooling degree days were used to capture the effects
of these respective independent variables in any regression analyses for which these

factors were deemed appropriate.
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Regression Analysis for Block Cracking

As stated in Chapter II, although there may be differences in performance for
newly constructed pavements and pavements that were block cracked and overlayed,
data were not available to make this determination. Therefore, all of the pavements that

could be included were used in the block cracking regression analyses.

The independent variables that were considered to have an effect on block
cracking included all the environmental variables, the asphalt thickness (AC), whether or
not the base was stabilized (SN), the subgrade type (FC) (fine or course), and the
construction dates (RC and OC). Aircraft load (EL) and pass level (EP) were not used

because block cracking is not considered to be load related

Forward stepwise linear regression analyses were performed comparing p and 8
to the appropriate independent variables. The independent variables were entered into
the forward stepwise regression procedure in order of decreasing correlation. Variables
that had a probability value (P-value) greater than 0.1, indicating they were not
significant at the 90 percent level of confidence, were removed as the steps progressed.
A summary of the stepwise procedures for relating p and f to the independent variables
are shown in Table G-4 and G-5, respectively (see Appendix G). The final forms of the
equations relating the independent variables to the dependent variables are shown in
Equations 5 and 6. The n, SEE and R? for Equation 5 are 8, 3.63, and 91 percent,

respectively. The n, SEE and R? for Equation 6 are 8, 0.34 and 99 percent, respectively.
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p = 62.98 — 0.788 (H20) — 24.0 (WS) + 6.79 (SC) (5)

B =9.14 —4.10 (H20) + 0.580 (WS) + 0.132 (SC) (6)

Where:
H20 = Amount of Precipitation (mm)
WS = Wind Speed (m/s)

SC = Sky cover (tenths)

Reviewing equations 5 and 6 shows that the wind speed (WS) variable has a
different sign for each equation, as would be expected if its influence is opposite for
each dependent variable. The reason the signs were the same in both equations for
precipitation (H20) and sky cover (SC) is that H20 had a minor effect on the p
parameter and SC had a minor effect on the § parameter. See Tables G-4 and G-5
(Appendix G) for their P-values and the increase in R? attributed to these two parameters
in each equation. Although these variables were not important in one equation, they
were important in the other eqﬁation. As stated previously, those parameters used in one

equation would be included in the other equation.

The R? values for equations 5 and 6 were high. The reason for the relatively high
values is the lack of features used to develop the equation. As discussed previously,

only 8 features at 4 airfields were used to develop the block cracking regression
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equations for p and B based on the independent variables (see Table 11). Fortunately,
only two airfields were in the same SHRP climatic zone as shown in Figure 6. The other
two airfields were in different climatic zones. The fact that three of the four SHRP
climatic zones were represented in the regression analyses helps make the equation
useful over a broader range of conditions. However, the small total number of features
and airfields still limits the ability to broadly use equations 5 and 6. When using these
equations, the input variables should be examined to ensure they are within the values

used to develop equations 5 and 6.

A sensitivity analysis was performed on Equations 5 and 6 to determine the
effect of each independent variable. Table 18 summarizes the sensitivity analysis
results, which included the following: the means of each variable, the extremes of each
variable with the means of the other variables, and the extremes of each variable. The

resulting p and B are presented in the last two columns of Table 18.

TABLE 18. Summary of Sensitivity Analysis for Equations 5§ and 6

H20 WS sC o B
(N 2) (3) (4) (5)
2.32 3.38 5.74 19.00 2.35
1.37 3.38 5.74 19.75 6.24
264 3.38 5.74 18.75 1.04
2.32 2.90 5.74 30.41 2.07
2.32 4.20 5.74 -0.82 2.83
2.32 3.38 3.80 5.85 2.09
2.32 3.38 7.10 28.25 2.53
1.37 2.90 3.80 18.01 5.71

2.64 4.20 7.10 8.17 1.70
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The values obtained for p and B in the sensitivity analysis are within the ranges
of values observed while fitting Gumbel curves to the field data except for one case
where p is less than zero. In Equation 3, p can mathematically be less than zero.
However for distress development it does not make sense to let p be less than zero
because that would indicate a time less than zero. Therefore, it is important that the
values calculated for p and B be examined to make sure they make sense. If any value
less than zero is obtained, it is an indication that the model can not handle the data
appropriately. Either the conditions at that site are outside the bounds of the data that
were used to develop the model, or the model can not realistically account for the

combination of conditions present at that site.

Figures 9, 10 and 11 show the results of the sensitivity analysis using actual
values from Table 18 within the acceptable range, which means no values less than zero
were used. Figure 9 shows the performance prediction curves based on values of p and
B from the sensitivity analysis using the extremes for precipitation (H20) and the means
for wind speed (WS) and sky cover (SC). Figure 9 shows that as the amount of
precipitation goes up, the initiation of cracking begins earlier. Figure 10 shows the
performance prediction curves based on values of p and B from the sensitivity analysis
using the lower extreme and mean of wind speed and the means of precipitation and sky
cover. The upper extreme of wind speed resulted in a negative value for p and thus
could not be used. Figure 10 shows that as wind speed increases, the rate of block

cracking increases. Figure 11 shows the performance prediction curves based on values
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of p and B from the sensitivity analysis using the extremes of sky cover and the means of

precipitation and wind speed. Figure 11 shows that as sky cover increases, the rate of

block cracking decreases.
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FIG 9. Sensitivity Analysis Based on the Extremes of Precipitation
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In addition to the sensitivity analysis, the independent variables were examined
to ensure that their influence on the Gumbel parameters were appropriate. Only those
variables that were significant according to the regression analyses were reviewed for
each parameter. For the p parameter, WS and SC were the significant variables. The
negative sign in front of WS indicates that as it goes up the p value decreases. A
decrease in p is associated with rapid development of the distress, which is as would be
expected with an increase in WS. The SC variable is preceded by a positive sign. This
indicates p increases with SC. An increase in p is associated with slower development
of the distress, which is as expected. If there is more SC, the rate of block cracking

development would be expected to decrease.

The independent variables that were significant for the B parameter were H20
and WS. As the H20 variable decreased, B increased. This is as expected because an
increase in B indicates a more rapid rate of distress growth. A drier environment, with a
shrinking subgrade, would be expected to contribute to a faster growth rate for block
cracking. As the WS variable increased, the § parameter increased. This is also as
expected. An increase in WS would be expected to be associated with an increase in the

block cracking growth rate.

The regression equations developed for the p and § parameters are not ideal, as
shown by the sensitivity analysis. One reason for this is that the equations are based on

a very limited amount of data. Therefore, the regression relationship between the
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Gumbel parameters and the independent variables should be updated to take advantage
of any data that become available. In addition, if and when it can be determined which
pavements consisted of an overlay placed on existing block-cracked pavements, these

pavement features should be analyzed separately.

Regression Analysis for Longitudinal/Transverse Cracking

The independent variables that were considered to have an effect on
longitudinal/transverse cracking included the following: all the environmental variables,
the asphalt thickness (AC), whether or not the base was stabilized (SN), the subgrade
type (FC) (fine or course), the construction dates (RC and OC), the aircraft load (EL),
and the aircraft pass level (EP). Although longitudinal/transverse cracking may be
environmentally induced as the initial stages of block cracking, longitudinal cracking

may also be related to aircraft loading.

Forward stepwise linear regression procedures were conducted to determine the
most suitable equations for predicting the dependent variables (p and ). The regression
procedures for both p and p are summarized in Tables G-6 and G-7 (Appendix G). The
initial results of the regression analyses included asphalt concrete thickness (AC) as a
parameter. When examining the influence of AC on the Gumbel parameters, an increase
in AC (asphalt thickness) caused the rate of longitudinal/transverse cracking to increase.
This did not make sense, so the AC parameter was removed. There may be many

reasons why the thicker AC pavements could have been associated with faster rates of
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crack growth; one reason could be that the thicker pavements consisted of overlays
placed on existing cracked pavements. The reflective cracking caused by the underlying
cracked pavements could progress through the pavement structure at a faster rate than is
typical for new pavements. However, this could not be verified with the available data
so the AC parameter was removed from the regression analyses for
longitudinal/transverse cracking. Several environmental factors remained in the
regression equation, along with one structural factor and a time factor. The regression
equations recommended for predicting p and P are shown in Equations 7 and 8,
respectively. The n, SEE and R? for Equation 7 are 35, 11.89 and 62 percent,

respectively. The n, SEE and R? for Equation 8 are 35, 0.026 and 83 percent,

respectively.

p =-6990 + 203(SC) + 1.98(H20) - 0.406(EL) +9.57(FC) + 3.02(RC) (7

B =46.9 - .432(SC) + .0973(H20) + .000946(EL) + .0179(FC) — .0223(RC) (8)
Where:

SC = Sky Cover (tenths)

H20 = Precipitation (mm)

EL = Evaluation Load (kips)

FC = Fine or Coarse Grained Subgrade

RC = Most Recent Construction Date (Calendar Year)
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The R? values for equations 7 and 8 are not as high as those determined in
equations 5 and 6. This is expected since many more features and airfields were used to
develop equations 7 and 8 (see Table 12) than were used for developing equations 5 and
6. There were 35 features from 7 airfields used to develop the relationships found in
equations 7 and 8. The 7 airfields are located in all four SHRP climatic zones as shown
in Figure 6. The representation of all the climatic zones helps insure a broader range of

applicability for equations 7 and 8 as opposed to the applicability of equations 5 and 6.

A sensitivity analysis was performed on Equations 7 and 8 as shown in Table 19.
The results of the sensitivity analysis were similar to the sensitivity analysis for the
block cracking equations in that one case resulted in a negative value for p. For this
distress, the determination of p and 8 should again be carefully scrutinized to make sure
they make sense and are within the bounds of the model. Figure 12 presents a graphical
representation of the results of the sensitivity analysis using actual values from Table 19
within the acceptable range, which means no values less than zero. The area between
the two curves shown in Figure 12 represents bounds, within which it would be expected
that any prediction curve would fall. As can be seen in Figure 12, the range of possible
distress growth rate curves for longitudinal/transverse cracking is relatively narrow.
This is not unexpected since most of the longitudinal/transverse cracking rates were
relatively low. This also may be because as the longitudinal/transverse cracking rate
quantity increases to a higher volume, it converts into block cracking. Therefore, only

low amounts of longitudinal/transverse cracking are observed and recorded.



TABLE 19. Summary of Sensitivity Analysis for Equations 7 and 8

SC H20 EL FC RC p B
(1) 2) ) 4 () (6) (7)
5.68 2.1 204 0 1982 63.89 0.74
5.30 2.1 204 0 1982 -13.26 0.90
5.90 2.1 204 0 1982 108.55 0.64
5.68 1.04 204 0 1982 61.77 0.63
5.68 264 204 0 1982 64.94 0.79
5.68 2.1 50 0 1982 126.38 0.59
5.68 2.1 325 0 1982 14.79 0.85
5.68 2.1 204 -1 1982 54.32 0.72
5.68 2.1 204 1 1982 73.46 0.75
5.68 2.1 204 0 1976 45.79 0.87
5.68 2.1 204 0 1986 75.96 0.65
5.30 1.04 50 0 1976 29.02 0.78

5.90 2.64 325 1

1986 82.14 0.74
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FIG 12. Sensitivity Analysis Results for Longitudinal/Transverse Cracking

Each significant independent variable in Equations 7 and 8 was examined to
determine that it was having the proper impact on the calculation of p and B. As stated

previously, the AC variable was removed because it did not have an appropriate impact

on both p and B.

The significant factors for p were sky cover (SC) and evaluation load level (EL)
(see Appendix G, Table G-6 for the results of the regression analyses that identified the

significant variables). As the amount of SC increases, the value of p increases and the

96
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rate of distress progression decreases. This is as expected. More SC indicates less solar
radiation, and thus a reduced rate of aging and subsequent cracking. As the evaluation
load level increases, the value of p decreases and the rate of distress progression
increases. This is also as expected. As more loads are applied, it is expected that the

rate of cracking would increase.

The significant factors for p are precipitation (H20), fine or coarse grained
subgrade (FC), and most recent construction date (RC). As the amount of H20
decreases, p decreases and the rate of distress progression decreases. This is as
expected. Less water is associated with shrinking subgrades and more cracking, along
with a decrease in the value of . The FC variable indicates whether a subgrade is fine-
or course-grained. The fine-grained subgrade results in an increase in B. This is as
expected because a fine-grained subgrade would be expected to be more susceptible to
volume changes and subsequently an increase in cracking rate. The final significant
variabie for B is RC and it is negatively related to . This is as expected. In general a
newer pavement would be expected to have a slower rate of cracking as opposed to an

older pavement.

Regression Analysis for Raveling/Weathering
The independent variables that were considered to have an effect on
raveling/weathering included all the environmental variables and the construction dates.

Also included was asphalt thickness, which could have an effect on this distress
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progression. As the name implies, weathering should be associated with aging of the
asphalt as a direct result of the environment. Raveling is considered a materials or
construction problem that may or may not be significantly affected by environmental
conditions. If the distress observed is raveling, as opposed to weathering, it may be

difficult to associate with any of the independent variables available.

Forward stepwise regression procedures were attempted for both p and B, but
these procedures did not result in any predictive equations. All of the analyses for p
indicated that each independent variable had large P-values. All of the P values were
greater than 0.1, indicating they were not significant at the 90 percent confidence level.
The regression procedure recommends that those independent variables with a P value
greater than 0.1 be removed from the model. In addition, the R? values for the p
analyses proceeded from 38 percent down to zero. Similarly for the B analyses, no
variable was found to be significant at the 90 percent level. The R? values for the
analyses with the [ factor ranged from 36 to 2 percent. Summaries of the results of the

forward stepwise regression procedures are shown in Tables G-8 and G-9 (Appendix G).

Reviewing Table 17 shows that the correlation coefficients were extremely high;
this is because there were only two sites from which appropriate raveling/weathering
data met the criteria for analysis. Examining the NOAA weather data in Table 5 for the
two sites used shows that although the two airfields (Cairns and Hood) were in different

SHRP climatic zones, their climates are relatively similar. Table 5 shows that for these
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two airfields, all weather data parameters are less than one standard deviation from each
other (except wind speed). In fact, most of the weather data parameters are less than one
half a standard deviation from each other, when considering the spread of the weather
data for all the airfields included in the study. The lack of difference in environmental
conditions would make it difficult to determine the contribution of the environment in

the development of the distress type under consideration.

The lack of available data confounded the determination of appropriate
relationships between the Gumbel parameters and the independent variables. The results
of these analyses indicate that either there were not enough data to determine a
relationship between the dependent and independent variables or that no relationship
exists between the independent and dependent variables. Whichever the case, an

appropriate relationship could not be developed based on the information available.
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Step S: Compare Actual versus Predicted Performance

The block cracking model equations developed in Step 4 provide only one
predictive performance curve for each airfield. This is because the results of the
regression analyses included only climatic parameters that are the same for all the
features at an airfield. The longitudinal/transverse cracking model retained two
environmental variables, the evaluation load level variable, and the variable indicating
whether the subgrade was fine or coarse grained; all of which were the same for all of
features of each airfield included in the development of the equations predicting p and p.
In addition the longitudinal/transverse cracking model contained the independent
variable considering the most recent construction date. This variable was the same for
most of the features at each airfield; however, a few features at two airfields did have

different values for the most recent construction date variable.

Figure 13 shows an example of the model curve plotted against the field data for
one of the sites with block cracking. Figure 14 shows a plot of longitudinal/transverse
cracking field data plotted against the appropriate model curve. Appendix H contains
figures showing the field data plotted against the model curve for all the sites and
conditions included in this study. The field data plotted in the figures in Appendix H are
the same data used to develop the model. Because the available data were limited in

terms of quantity, all of the available data were used to develop the model.




100

75

50

Distress Density

25

— Model

m T8E
A TH1E

0._

0

e

10 20
Time (years)

30

FIG 13. Model Curve and Field Data for Block Cracking at Cairns AAF

101




102

20
> 15
@ — Model
a 0 ) » A19E
§ s A21E
.‘g e T6E
Q 5
(]
0 - < .
0 10 20 30
Time (years)

FIG 14. Model Curve and Field Data for L/T Cracking at Hood AAF




103

Tables 20 and 21 contain the tabulated field distress density data, the model
predicted distress density and the difference between the field data and model values for
the distress types of block cracking and longitudinal/transverse cracking, respectively.
Based on a review of the comparison of field data to model data, the model should be

examined for calibration. Step 6 discusses calibration of the model.

TABLE 20. Comparison of Field and Model Block Cracking Distress Density Data

Airfield Feature Actual Predicted Actual — Actual Predicted Actual —
DDatT,+ DDatT, Predicted DDatT,* DDatT, Predicted
DD at T, DDatT,
1 (2) 3 4) (5 (6) (7 (8
Biggs A9E 8.45 0.00 8.45 100.00 90.73 9.27
Cairns T8E 1.06 0.06 1.00 4.79 1.96 2.83
Cairns TIE 0.44 0.06 0.38 2.66 4.35 -1.69
Hunter RSE 9.32 10.39 -1.07 NA NA NA
Hunter T1E 0.37 0.00 0.37 7.52 10.39 -2.87
Hunter T8E 7.34 0.00 7.34 23.60 10.39 13.21
Hunter TOE 0.15 0.00 0.15 5.03 10.39 -5.36
Wheeler- T2E 36.60 33.48 3.12 100.00 97.61 2.39
Sack

* DD = Distress Density, T, refers to the first evaluation, T, refers to the second evaluation
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TABLE 21. Comparison of Field and Model L/T Cracking Distress Density Data

Air- Feat Actual Model Actual Actual Model Actual Actual Model Actual
field DD at DD at - DD at DD at - DD at DD at -
Te* T4 Model T* T2 Model T3* Ts Model
DD at DD at DD at
T4 T2 Ts
()] (2) (3 4 (5 ® (1) (8) 9 (10) (11)
Butts R2E 1.54 1.02 0.52 4.17 5.71 -1.54 NAZ? NA NA
Butts R3E 1.88 1.02 0.86 4.59 5.71 -1.12 NA NA NA
Butts R4l 1.97 1.02 0.95 4.79 5.71 -0.92 NA NA NA
Butts R5E 1.85 1.02 0.83 4.27 5.71 -1.44 NA NA NA
Butts R6E 2.06 1.02 1.04 5.03 5.71 -0.68 NA NA NA
Cairns R6} 0.46 0.43 0.03 1.92 2.19 -0.27 NA NA NA
Cairns T1E 0.96 0.43 0.53 1.98 2.19 -0.21 NA NA NA
Cairns T4E 0.48 0.43 0.05 1.04 2.19 -1.15 1.18 416 -2.98
Cairns T8E 1.08 043 0.65 3.94 2.19 1.75 NA NA NA
Cairns TOE 1.03 0.43 0.60 3.56 2.19 1.37 4,16 4.16 0.00
Cairns T10E 1.30 0.43 0.87 2.68 2.19 0.49 4.77 4.16 0.61
Cairns T12E 0.27 043 -0.16 0.46 219 -1.73 1.10 4.16 -3.06
Cairns AGE 1.17 043 0.74 1.98 2.19 -0.21 NA NA NA
Caimns A10E 0.01 0.00 0.01 3.08 1.05 2.03 4.05 2.64 1.41
Caims A11E 0.53 0.01 0.52 1.31 0.78 0.53 1.44 2.86 -1.42
Cairns A12E 0.10 1.05 -0.95 0.68 2.64 -1.96 NA NA NA
Hood A19E 0.67 0.33 0.34 2.32 2.74 -0.42 NA NA NA
Hood A21E 0.04 0.33 -0.29 0.64 2.74 -2.10 NA NA NA
Hood A8E 1.52 0.17 1.35 1.72 2.26 -0.54 NA NA NA
Hood T6E 0.32 0.13 0.19 1.56 2.11 -0.55 NA NA NA
Hunter TOE 1.91 0.01 1.0 2.14 2.80 -0.66 NA NA NA
Hunter A7E 0.01 0.01 0.00 2.33 2.80 -0.47 NA NA NA
Hunter A8E 0.31 0.01 0.30 0.40 2.80 -2.40 NA NA NA
Hunter A19E 0.62 0.01 0.61 1.30 2.80 -1.50 NA NA NA
Hunter  A30E 0.37 0.01 0.36 2.81 2.80 0.01 NA NA NA
Hunter T6E 0.37 0.01 0.36 1.49 2.80 -1.31 NA NA NA
Hunter  T10E 1.56 0.01 1.55 2.01 2.80 -0.79 NA NA NA
Phillips R2I 0.15 0.04 0.1 1.11 2.63 -1.52 NA NA NA
Phillips R4l 0.14 0.04 0.10 3.79 2.63 1.16 NA NA NA
Phillips R5I 0.06 0.04 0.02 1.96 263 -0.67 NA NA NA
Phillips T2E 0.05 0.04 0.01 2.36 2.63 -0.27 NA NA NA
Phillips T4E 0.01 0.04 -0.03 0.86 2.63 -1.77 NA NA NA
Selah R8E 4.23 264 1.59 6.02 8.01 -1.99 NA NA NA
Selah A1E 3.07 2.64 0.43 5.41 8.01 -2.60 NA NA NA
Sim- R1E 0.16 0.38 -0.22 5.00 1.87 3.13 NA NA NA
mons

*DD = Distress Density, T refers to the first evaluation, T, refers to the second evaluation, T3
refers to the third evaluation
“NA means there was no data available for a third evaluation period.
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Regression analyses were performed on the resuits shown in Tables 20 and 21
comparing the actual data to the field data. The regression analysis on the block
cracking data resulted in and R? of 98 percent, a SEE of 5.09, with ann of 15. The
regression analysis performed on the longitudinal/transverse cracking data resulted in an
R? of 1 percent, a SEE of 1.11, with ann of 76. The relatively high R? for block
cracking is probably due to the relatively low n over a large range of data. The field
block cracking distress density data ranged from 0 to 100 percent. The large range in
values also contributed to the relatively large SEE value for the block cracking data.
The very low R? for longitudinal/transverse cracking is due to the extremely low distress
densities observed and the difficulty in fitting the model to these low values. The field
longitudinal/transverse cracking distress density data ranged from 0 to 8 percent with
most around or less than 1 percent. Therefore, if the model was in error by only one or
two distress density points, although this would not make a meaningful difference in the
quality of the prediction, from a statistical analysis the prediction was in error by orders
of magnitude. These apparently large discrepancies in predictions result in the very low
R? determined. However, these low values had an opposite effect on the SEE and
provided a lower value than that calculated for block cracking. The results of this
regression analyses could be used in determining reliability for the model. However, an

alternative method is provided in Step 7: Establish Model Reliability.
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Step 6: Calibrate Model with Field Performance

Ideally there would be a sufficient amount of data available so that some data
could have been set aside and used to compare the model predictions to actual
performance and used to calibrate the model. The relatively small data sets required that
all the available data be used in the development of the models. When and if appropriate
additional data become available, the model should be calibrated using these data. When
evaluating a particular pavement feature, if it has two or more distress density data
points that meet the requirements used for developing the regression equations between
the dependent and independent variables, the model should be updated or calibrated with

these data.

The following paragraphs discuss procedures for calibrating or adjusting the
prediction curve of an individual pavement feature using the results of a PCI survey.
There are two possible ways the prediction curve can be calibrated for a particular
feature based on a PCI survey: 1) the shape and slope of the curve can be adjusted to
match the field data, or 2) the curve can be shifted to better align with the field.
Application of the first method indicates that the model is not predicting the growth rate
accurately. Application of the second method indicates that the distress growth rate
prediction is accurate, but there is an error in determining an appropriate construction

date or date when the distress first begins to develop.
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While reviewing the plots of data in Appendix H, it is apparent that some of the
data indicates an adjustment in slope would be appropriate, while others indicate a shift
in the curve would be appropriate. If more than one data point exists, the model
equation should be fit to the field data. In addition, these data can be used to calibrate
the model. The method of fitting the model equation to the field data would be
considered adjusting the shape or slope of the curve to match the field performance. For
those features with only one data point, it is recommended that the curve be shifted as
discussed in the following paragraphs. For new pavements with no distress density data
points, the model equation based on the local environment can be used, or no prediction
should be made until a PCI survey has been made of the pavement and distresses begin

to appear.

The procedure recommended for shifting the performance curve based on the
PCI data of an individual feature is similar to the procedure used for adjusting family
curves based on observed data (Smith et al 1987). An example of determining an
appropriate estimation to time tci by shifting the performance curve for an airfield
follows. The term tr; refers to the projected time in years when it is expected that the
distress density will reach a critical level, DDy, resulting in a PCI at the minimum level
established by the Army (AR 420-70). (Note: Step 7 on reliability discusses the
determination of te at various confidence levels at selected levels of DDcyii.) Consider
that the model predicts the time to t; for an airfield to be 15 years at a 50 percent

confidence level for a DDy of 66 for block cracking. Also consider that a feature on
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that airfield was surveyed and the distress density of block cracking was found to be 10
percent at 5 years into the life of the pavement. Now consider that the model predicts
that the DD of 10 percent will occur at 7 years, with a confidence level of 50 percent.
Considering the field data and the model prediction, the prediction time to DD should
be shifted 2 years. Therefore the prediction to DD,y should be adjusted from 15 to 13
years. It would then be expected that the airfield would reach the critical distress density

level for block cracking 8 years from the time of the survey.

Step 7: Establish Model Reliability

Step 7 requires that reliability be established for the model. The ultimate goal of
the model is to estimate the time when the critical level of distress density will be
reached. The first step in applying a reliability analysis to the model is to establish the
expected value and variance for each of p and $. To determine the expected value and
variance of p and B, the first order second moment (FOSM) procedure was used (Harr
1987). The model developed to predict the distress density growth of block cracking is
used as an example to demonstrate the application of the procedures used to consider
reliability. Equations 9 and 10 show the relationships for determining the expected
value and variance of p for the block cracking model. Similar equations would be used
for finding the expected value and variance of B. It should be noted that the form of
Equation 10 assumes that the independent variables are independent of each other and

therefore all covariances are zero. Recall that the terms of heating degree days and solar
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radiation were eliminated from the model development because there would have been
covariance between these two terms and cooling degree days and sky cover,
respectively. If the correlation coefficients are examined in Table 13 for the variables
contained in the equations for p and B, the highest correlation coefficient found is
between wind speed (WS) and precipitation (H20). The correlation coefficient between
these two variables is ~0.53. This is a relatively low correlation coefficient, and there is
no reason to suspect that they would be highly correlated. Therefore the assumption that

the covariance is zero is considered appropriate.

E[p (120, WS, C) ] = p (AZ0, WS, ST) €))

Var (p) = [9p/0H20]” Var[H20] +[ap/dWS]* Var[ws]+ [0p/dsC]’ Var[sC] (10)

Where:

E[p (120, WS, SC) ] = The expected value of p
(a function of H20, WS and SC)

20 = The mean value of H20
WS = The mean value of WS
IC = The mean value of SC

Var (p) = The variance of p
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0p/0H20 = The partial derivative of p with respect to H20
Var(H20) = The variance of H20

0p/0ws = The partial derivative of p with respect to WS
Var(ws) = The variance of WS

0p/0SC = The partial derivative of p with respect to SC

Var(SC) = The variance of SC

For Equation 10, the partial derivative of p with respect to each independent
variable is the value of the constant term that is multiplied times that respective
independent variable in the original function, as shown in Equation 5. This is because
Equation 5 is linear. For example, 0p/0H20 is —~0.788 (see Equation 5). For block
cracking, the expected value and variance of both p and B were determined based on
Equations 5 and 6, respectively. The expected value and variance of p are shown in

Equations 11 and 12, respectively.

E[p (H20, WS, SC)J= 63.0 - 0.788(2.32) — 24.0(3.38) + 6.79(5.74) = 19.0 1)

Var (p) = [-0.788][.275] + [-24.0][0.162] + [6.79]*[.816] = 131 (12)

Similarly the expected value of B was found to be 2.35 and the variance of p was found

to be 4.68.
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The next step in determining a solution with reliability considerations is to
determine a probability density function for the variable of time. The CDF was
rearranged so that the time to the distress density critical level (DDcrit) could be
calculated with p, B, and DD,y as inputs, as shown in Equation 13. The critical distress
densities correspond to deduct values of 25 points for primary pavements and 45 points
for secondary pavements, on the scale of 100. The critical level of distress density for
block cracking on primary and secondary pavements is 11 and 66 percent, respectively.
The critical level of distress density for longitudinal/transverse cracking on primary and
secondary pavements is 5 and 16 percent, respectively. The critical level of distress
density for raveling and weathering on primary and secondary pavements is 15 and 51

percent, respectively.

terit = P/ [[-In(DDerir' 100)]°(1/B)] (13)

To obtain a probability density function for time, a selected value of critical
distress density level (DDcir) afong with the expected values and variances of p and B
need to be applied to equation 13. The method selected for finding a probability
distribution of time to t;; is the Monte Carlo simulation technique (Harr 1987). This

process involves randomly selecting variables from distributions for each variable in the
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equation and calculating the value of the function. This process is repeated many times
until a distribution for the dependent variable can be examined. The number of
replicates required depends on the level of confidence desired in the answer. For an
equation with two variables, approximately 4,500 replicates are required for a 90 percent
level of confidence. For levels of confidence of 95 percent and 99 percent, the

respective number of required replicates is approximately 148,000 and 277,000,000

(Harr 1987).

The Monte Carlo simulation technique requires that a distribution for the input
variables be known (Harr 1987). Based on the mean and variance determined for p and
B, appropriate distributions can be selected. All values of both p and B must be greater
than or equal to zero. Also, the standard deviations are approximately equal to the
means. Therefore, the most appropriate distribution is the exponential distribution (Harr

1987). The exponential distribution has a high positive skew.

A program for performing Monte Carlo simulations was used to determine a
probability distribution for tr (Sun 1993). The results for two values of DD, are
shown in Table 22. The DDg;; values of 11 and 66 are distress density levels of block
cracking associated with PCI levels of 75 and 55. The PCI levels of 75 and 55 are the
critical values for primary and secondary pavements, respectively. The number of
replicates shown in Table 22 indicates the number of Monte Carlo simulations

performed. The value in years associated with a P level shown in Table 22 indicates the
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level of confidence based on the probability density function for time. For example, a P

level of 0.1 indicates a confidence level of 90 percent that the distress will not reach the

critical distress density before that time. The P values of 0.2, 0.25, and 0.5 are

associated with confidence levels of 80, 75 and 50 percent, respectively. The preceding

procedure can be used with any level of distress density and any level of confidence can

be determined.

TABLE 22. Summary of Monte Carlo Simulation

DDgit Number of Time (yrs) to Reach DD
Replicates For Different Levels of Confidence (P)
P=0.1 P=02 P=0.25 P=0.5
(1) (2) (3) (4) (5) (6)
11 500 4 16 2.1 5.1
1,000 1.0 2.4 32 6.7
10,000 9 22 2.9 6.7
66 500 2.1 4.9 6.2 19.8
1,000 2.3 52 7.0 20.0
10,000 24 52 6.8 19.4
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The results shown in Table 22 show there is a wide range in the predicted time in
years for a feature to reach the critical distress density level, depending on the level of
confidence considered. This is not too surprising considering the limited data set used to
develop the model and the wide range in possible growth curves as shown in Figures 9,
10 and 11. This wide dispersion in reliability results shows why it is important to shift
or adjust the performance prediction curve with field data when available. The shifting
or adjusting of the performance curve based on individual feature PCI data should

improve the prediction capability of the model.

TIME TO CRITICAL DISTRESS DENSITY

As discussed previously, the ultimate goal of the distress density prediction
model is to determine the time when a pavement feature will reach the critical distress
density resulting in a critical PCI level according to criteria established by the Army.
Based on the processes used in the Army for requesting funds, and considering the
limitations of the proposed model, it is recommended that the time to DD, be reported
in categories of years. An appropriate system of categories would be similar to that used
in the Texas method for determining remaining pavement life (Michalak and Scullion

1995). The categories are as follows: 0-2, 2-5, 5-10, and 10 + years.

This system of categories should work well for Army installations. Normal
funding requests are made annually. Budgets for projected fund requirements for out

years, 2-5 years, are also updated annually. Periodically, every 2 or 3 years, requests are
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made for long term budget projections that include a 5-10 year period. Finally, any
pavement projected to have a life greater than 10 years before the critical distress density
level will be reached should be surveyed in the interim to provide an update on the

performance of those features.
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CHAPTER VI

SUMMARY, CONCLUSIONS AND RECOMMENDATIONS

SUMMARY

At the beginning of this project it was intended that an improved structural
performance prediction model would be developed because the current structural
evaluation procedure does not consider fatigue or past structural damage. It became
evident, after some investigation, that structural performance was not a significant
problem for most Army airfield pavements. Therefore the research was redirected to
develop a distress density growth model. Because the Army specifies minimum
pavement surface condition levels, it was determined that a procedure for predicting
when individual pavement features would reach the critical distress density level would

benefit the Army.

The database of airfield evaluations was used as a basis for developing a distress
density prediction model. Probability considerations and observed performance
characteristics were used to select an appropriate equation form for modeling distress
density growth. Reliability concepts were applied to the model to provide predictions in

terms of time to the critical distress density level at selected levels of confidence.
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CONCLUSIONS
There are three major findings that have been discovered through the work

documented in this dissertation:

1. Few Army airfield pavements have failed structurally.
2. The majority of the distresses observed on Army airfield pavements are
environmentally induced.

3. An environmental distress prediction model is a tool needed by the Army
for determining when airfield pavements will reach a critical condition.

The Army should be focusing more research on determining the causes, impact,
and developing procedures for mitigating the effects of environmentally induced
distresses on their airfield pavements. The model developed in this study provides a tool
for predicting environmental distress development on flexible Army airfield pavements.
The distress density growth model developed has many limitations as would be expected
with any empirical model. However, it does provide an advantage over no prediction

procedure.
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RECOMMENDATIONS

The distress prediction model procedure developed herein should be incorporated
and used by the Corps of Engineers in the Army airfield evaluation procedure. The
curve fitting technique that was implemented in this study should be used for any feature
that has sufficient performance data (i.e. two data points with PCI values less than the
critical value and no major rehabilitation or reconstruction during the evaluation period).
When data does exist for fitting new Gumbel CDF curves, the resulting p, B and the
associated independent variable data should be used to update the regression equations.
The performance prediction equation that predicts the time to a critical distress density
should be used, and shifted as appropriate, for features that have only one distress
density data point and have similar conditions as those used for developing the p and B
regression equations. For features with no distress density, the prediction curve can be
used, or no prediction should be made until distress initiation is observed during a PCI

survey.

When the model is used, the values determined for time to DD should be used
for work planning and programming purposes by the local installations and to justify
funding requirements. The time to DD,y can be determined at any level of confidence
desired. It is recommend that the 50 percent confidence level be used for planning and

programming purposes. The reasons for recommending the use of time to DD at a 50
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percent confidence level are as follows: 1) the empirical nature of the model, 2) the
frequency of the condition surveys, and 3) the lack of catastrophic failure associated with
pavement failures. By lack of catastrophic failure it is meant that loss of life is not
expected if the PCI of an airfield pavement drops below 75 for a primary pavement or 55
for a secondary pavement. In addition to using the 50 percent confidence level for
reporting the time to DDy, it is also recommended that the time to DD be categorized
as follows: 0-2, 2-5, 5-10 and 10+ years. This should provide the local installations with
needed input for determining when funds will be required, and this will coincide with the
requirements for funding requests that are made by Army installations. Performing the
condition surveys on a five-year cycle will ensure that all features are adequately

monitored.

Although the model was examined for use in developing prediction capabilities
for three distress types, there were only enough data to develop preliminary relationships
for two distress types. As more data become available, and if other distress types
develop to significant levels, additional relationships should be developed for predicting

the development of other distresses.
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It is recommended that a long term, detailed pavement evaluation program for
selected sites be initiated. The location of the sites should be evenly spread over climatic
zones. All available testing techniques, including nondestructive and destructive, should
be performed at these sites on a periodic basis. The purpose for doing this is to provide
information on what data are important and should be collected at all the airfields
evaluated by the Corps of Engineers. As a researcher, collecting all the data possible at
all sites sounds wonderful. Realistically, the cost and time for doing this would likely be
prohibitive. Collecting detailed data on an appropriate sample of airfield pavements
should be adequate to identify those data that should be collected on all airfield
pavements. The results of a detailed long term pavement performance study will provide
information for improving the models developed in this study and determining other

factors effecting the performance of Army airfield pavements.

Selected material data should be collected at all Army airfields evaluated because
one of the most significant limitations to the model developed in this study is the lack of
material data. The development of environmental distresses is a function of how the
materials react to the environment. Some asphalt cements and asphalt concretes are
more susceptible to deterioration due to exposure to environmental conditions. Without
appropriate material data, these factors could not be considered. This is evident in the
block cracking model which currently only contains environmental parameters.
However, the response of the material to the environment would be expected to be a

function of the properties of the material. An important factor in the development of
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block cracking is the stiffness of the asphalt cement. The stiffness of the asphalt cement
changes over time as the asphalt cement ages due to oxidation, and hardens due to
molecular restructuring. Research should be conducted into finding a procedure for
determining the stiffness of the asphalt cement due to both the oxidative aging and
molecular restructuring. Short of that research and until it can be accomplished, the
standard Marshall test performed on cores obtained from the field would provide some
indication of the aging of the asphalt, as would viscosity and penetration tests on the
recovered binder. In addition, the SHRP low temperature strength and creep compliance
tests would provide better indications of the low temperature susceptibility to cracking of
the asphalt cement. The results of the SHRP tests could also be used to incorporate the

SHRP asphalt cracking model into the performance prediction models developed herein.

More complete FWD data should be collected. Currently, the Corps of Engineers
evaluation procedure only requires the collection of the peak load and deflection data;
the time histories of these two parameters are not collected. The time histories would
allow for a dynamic analysis of the pavement, and in particular the determination of the
damping effects of the pavement. It would be expected that as the pavement
deteriorates, the damping effect would increase. For example, if micro-cracks develop as
block cracking initiates, it would be expected that a corresponding measurable increase
in damping would be observed in the deflection time histories. The Corps of Engineers
has the capability to collect the time histories of the load and deflection during FWD

testing.
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In addition, the FWD should not only be placed in the center of blocks to avoid
cracks, but testing should be conducted and noted near cracks so that the impact of the
cracks on the backcalculated moduli can be determined. This should better tell whether
the block cracking would decrease the life of the pavement if it were subjected to
mobilization loadings. It is expected that the base and subbase below the cracks have
been weakened due to water infiltration and exposure to the environment. The current
Corps of Engineers guidance recommends that that block cracks be sealed. However,
unless appropriate FWD testing is conducted to ensure that the pavement structure has
not been weakened in the area around the cracks, it is not known whether crack sealing is

appropriate or a structural upgrade should be required.

Innovative NDT procedures should be investigated to make sure the Corps of
Engineers remains on the cutting edge of pavement evaluation concepts and
technologies. Two new procedures being developed include the use of a rolling weight
deflectometer and ground penetrating radar. These techniques may yield faster, better
and more data for evaluating pavements. The technique of ground penetrating radar may
provide information related to asphalt content, moisture conditions, and voids. If this
technique is proven to be accurate, a great deal of useful information could be collected

relatively quickly and inexpensively during airfield evaluations.



In summary, the Corps of Engineers should implement the distress density
growth prediction technique developed in this study due to the predominance of
environmental distresses on Army airfield pavements. In addition, the Corps of
Engineers, while conducting Army airfield evaluations, should collect additional data
that may provide more insight into the development of these environmentally induced
distresses. Finally, innovative data collection and evaluation techniques should be
investigated so that the Corps of Engineers can remain in the forefront of pavement

evaluation technologies.
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APPENDIX A

PAVEMENT CONDITION INDEX DATA

The tables contained in this appendix include the data from individual pavement
condition index (PCI) surveys for each of the airfields included in this study. Each table
presents the data for a single survey. The tables include the feature name, area of the
feature in square meters, the area of individual distress types and severity levels in
square meters, and the percent of the distress type mechanism. As an example, in Table
A-1, feature A10E had an area of 114,736 sq meters; it had 78,229 sq meters of low
severity block cracking (43L) and 36, 507 sq meters of medium severity block cracking
(43M). In addition, 100 percent of the distress observed on feature A10E was
considered to be related to climatic causes. The distress types shown in the tables are
listed by their numerical designation. The names associated with the numerical
designations are shown in Table 2. Feature designations beginning with an A (such as
A10E) are for aprons; those beginning with an R (such as R10E) are for runways; and

those beginning with a T (such as T12E) are for taxiways.
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APPENDIX B

WEIGHTED PCI DETERMINATIONS

The tables contained in this appendix report the overall PCI, on a scale from 0 to
100, for all the asphalt concrete features of each airfield for each evaluation. These
tables also report the area of the features in square meters, the weight of the feature for
that airfield (the area of the feature divided by the total areas of asphalt concrete features
for that airfield) and the weight times the PCI. At the bottom of each table is the overall
average PCI, the area of all the features for that airfield, the total weight (1.00) and the
overall weighted PCI. Chapter IV provides a more detailed explanation of the

calculations and the purpose for making these determinations.
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TABLE B-1. Bigg§ AAF 1984 Weighted PCI
PCI Feature Area WEIGHT WT X PCI
1N (2) (3) (4) (5)

57 A10E 114736 0.30 17.15
48 A12E 29729 0.08 3.74
41 A29E 17392 0.05 1.87
46 ABE 11148 0.03 1.34
76 A9E 37626 0.10 7.50
45 T17E 5574 0.01 0.66
45 T18E 50493 0.13 5.96
31 TE 6967 0.02 0.57
32 T20E-P 34839 0.09 2.92
44 T21E-P 5574 0.01 0.64
46 T25E 12542 0.03 1.51
44 T26E 25084 0.07 2.89
46 TSE 4646 0.01 0.56
44 T6E 25084 0.07 2.89
46.07 Total 381434 1.00 50.20

TABLE B-2. Biggs AAF Weighted PCI 1989
PCI Feature Area WEIGHT WT X PCI
(1) (2) (3) (4) (5

26 A10E 114736 0.40 10.39
21 A12E 29729 0.10 2.18

21 A20E 4181 0.01 0.31

21 A21E 1394 0.00 0.10
21 ABE 11148 0.04 0.82

21 ATE 1324 0.00 0.10
46 ASE 37626 0.13 6.03
46 T10E 3995 0.01 0.64
46 T11E 5923 0.02 0.95
64 T16E-P 7739 0.03 1.73
46 T20E-P 34839 0.12 5.58
21 TSE 4646 0.02 0.34
21 T6E 25084 0.09 1.84
21 T7E 4645 0.02 0.34

31.57 Total 287007 1.00 31.33
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TABLE B-3. Biggs AAF Weighted PCI 1992
PCI Feature Area WEIGHT WT X PCI

(1) (2) 3) 4) (5)
21 A10E 114736 0.45 9.41
21 A20E 4181 0.02 0.34
21 A21E 1394 0.01 0.11
21 ABE 11148 0.04 0.91
46 ASE 37626 0.15 6.76
46 T10E 3995 0.02 0.72
46 THE 5923 0.02 1.06
46 T16E-P 7739 0.03 1.39
46 T20E-P 34839 0.14 6.26
21 TSE 4646 0.02 0.38
21 T6E 25084 0.10 2.06
31 T7E 4645 0.02 0.56
32.25 Total 255054 1.00 29.98

TABLE B-4. Butts AAF Weiggted PCI 1984
PCl Feature Area WEIGHT WT X PCI

(1) (2) 3) (4) ()

- 81 A1E 3135 0.03 2.80
80 A2E 4993 0.06 4.41
76 A3E 23964 0.26 20.09
76 R10E 6967 0.08 5.84
94 RME 1394 0.02 1.45
91 R2E 3484 0.04 3.50
90 R3E 13484 0.04 3.46
84 R4l 17837 0.20 16.563
90 RSE 3484 0.04 3.46
87 R6E 3484 0.04 3.34
71 R7E 1394 0.02 1.09
77 R8E 6967 0.08 5.92
72 Rol 2090 0.02 1.66
61 T1E-P 4645 0.056 3.13
76 T2E-P 2739 0.03 2.30
94 T4E-P 585 0.01 0.61

81.25 Total 90649 1.00 79.58




TABLE B-5. Butts AAF Weighted PCI 1989

PCI Feature Area WEIGHT WT X PCi
(1) (2) (3) 4) (5)
20 A1E 3135 0.03 0.67
19 A2E 4993 0.05 1.01
16 A3E 23964 0.25 4.07
17 R10E 6967 0.07 1.26
20 R11E 1394 0.01 0.30
16 R1E 3484 0.04 0.59
88 R2E 3484 0.04 3.26
86 R3E 3484 0.04 3.18
86 R4l 17837 0.19 16.30
87 R5E 3484 0.04 3.22
86 R6E 3484 0.04 3.18
17 R7E 1394 0.01 0.25
16 R8E 6967 0.07 1.18
20 Rl 2090 0.02 0.44
14 T1E-P 4645 0.05 0.69
16 T2E-P 2739 0.03 0.47
74 T4E-P 585 0.01 0.46

41.06 Total 94133 1.00 40.53

TABLE B-6. Butts AAF Weighted PCI 1993

PCI Feature Area WEIGHT  WT X PCI
(1) (2) 3) (4) )]
18 A1E 3135 0.03 0.60

3 A2E 4993 0.05 0.16

24 A3E 23964 0.25 6.11
21 R10E 6967 0.07 1.55
29 R11E 1394 0.01 0.43

4 R1E 3484 0.04 0.16
73 R2E 3484 0.04 270

69 R3E 3484 0.04 2.55
71 R4l 17837 0.19 13.45
69 R5E 3484 0.04 2.55
71 R6E 3484 0.04 2.63
20 R7E 1394 0.01 0.30
20 R8E 6967 0.07 1.48
22 Roi 2090 0.02 0.49

3 T1E-P 4645 0.05 0.156
18 T2E-P 2739 0.03 0.52
20 T4E-P 585 0.01 0.12

32.65 Total 94133 1.00 36.95
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TABLE B-7. Cairns AAF Weighted PCI 1985

PCI Feature Area WEIGHT WT X PCl
(1) (2) (3) (4) (3)
95 R1E 6967 0.02 1.59
92 R2E 6967 0.02 1.54
93 Ra3l 41807 0.10 9.37
89 R4E 13935 0.03 2.99
95 R5SE 13935 0.03 3.19
90 R6l 36232 0.09 7.86
95 R7E 13935 0.03 3.19
88 T1E-P 12146 0.03 2.58
89 T2E-P 3965 0.01 0.85
78 T3E-P 3772 0.01 0.71
94 T4E-P 5634 0.01 1.28
93 T6E-P 3333 0.01 0.75
92 T7E-P 12333 0.03 273
89 T8E 13127 0.03 2.81
89 TOE 12820 0.03 2.75
88 T10E 10707 0.03 2.27
86 T11E 2787 0.01 0.58
83 T12E 2615 0.01 0.52
59 T13E 1951 0.00 0.28
29 T14E 3135 0.01 0.22
64 A1E 62594 0.15 9.65
64 AZE 11381 0.03 1.75
64 A3E 21999 0.05 3.39
90 ABE 5072 0.01 1.10
79 ATE 5017 0.01 0.95
57 A9E 32888 0.08 452
85 A10E 26477 0.06 542
92 A11E 6020 0.01 1.33
100 A12E 17837 0.04 4.30
64 A17TE 3697 0.01 0.57
82.17 TOTAL 415084 1.00 81.04
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TABLE B-8. Cairns AAF Weighted PCI 1989
PCI Feature Area WEIGHT WT X PCI
(1) (2) 3) (4) (5)

57 R1E 6967 0.02 0.96
46 R2E 6967 0.02 0.77
51 R3l 41807 0.10 5.14
51 R4E 13935 0.03 1.71
61 R5E 13936 0.03 2.05
68 R6l 36232 0.09 5.94
60 R7E 13935 0.03 2.01
83 T1E-P 12146 0.03 243
88 T2E-P 3965 0.01 0.84
53 T3E-P 3772 0.01 0.48
77 T4E-P 5634 0.01 1.05
67 T6E-P 3333 0.01 0.54
65 T7E-P 12333 0.03 1.93
66 T8E 13127 0.03 2.09
70 TOSE 12820 0.03 2.16
78 T10E 10707 0.03 2.01
89 TIE 2787 0.01 0.60
95 T12E 2615 0.01 0.60
58 T13E 1951 0.00 0.27
30 T14E 3135 0.01 0.23
46 A1E 62594 0.156 6.94
46 A2E 11381 0.03 1.26
46 A3E 21999 0.05 244
86 ABE 5072 0.01 1.05
81 ATE 5017 0.01 0.98
40 ASE 32888 0.08 3.17
68 A10E 26477 0.06 4.34
62 AMME 6020 0.01 0.90
97 A12E 17837 0.04 417
46 A17E 3697 0.01 0.41

64.37 TOTAL 415084 1.00 59.45
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TABLE B-9. Cairns AAF Weighted PCI 1992

PCI Feature Area WEIGHT WT XPCI
(1) (2) () (4) )]

62 R1E 6967 0.02 1.04
99 R2E 6967 0.02 1.65
96 R3I 41807 0.10 9.62
57 R4E 13935 0.03 1.90
58 R5E 13935 0.03 1.94
76 R6l 36232 0.09 6.60
63 R7E 13935 0.03 2.1
67 T1E-P 12146 0.03 1.95
67 T2E-P 3966 0.01 0.64
53 T3E-P 3772 0.01 0.48
68 T4E-P 5634 0.01 0.92
67 T6E-P 3333 0.01 0.54
65 T7E-P 12333 0.03 1.92
61 T8E 13127 0.03 1.92
63 TOE 12820 0.03 1.94
62 T10E 10707 0.03 1.59
61 T11E 2787 0.01 0.41
69 T12E 2615 0.01 043
46 T13E 1951 0.00 0.22
28 T14E 3135 0.01 0.21
59 T15E 1932 0.00 0.27
64 A1E 62594 0.15 9.61
64 A2E 11381 0.03 1.75
64 A3E 21999 0.05 3.38
59 AGE 5072 0.01 0.72
69 ATE 5017 0.01 0.83
25 ASE 32888 0.08 1.97
67 A10E 26477 0.06 425
65 AM1ME 6020 0.01 0.94
70 A12E 17837 0.04 2.99
64 A17E 3697 0.01 0.57

63.16 TOTAL 417018 1.00 65.30




TABLE B-10. Forney AAF Weighted PCI 1986

PCI Feature Area WEIGHT WT X PCI
(1) (2) (3 (4) (5)
71 A1B 20581 0.13 8.90
76 R1A 7246 0.04 3.36
62 R2A 26199 0.16 9.90
65 R3A 44245 0.27 17.52
72 R4A 7037 0.04 3.09
64 T1A-P 58808 0.36 22.93
68.33 Total 164117 1.00 65.70

TABLE B-11. Forney AAF Weighted PCI 1992

PCI Feature Area WEIGHT WT X PCI
(1) (2) (3) (4) (5)
64 A1E 20112 0.18 11.63
64 T1E-P 5881 0.05 3.40
64 R6E 7037 0.06 4.07
64 R5SE 6898 0.06 3.99
64 R3l 19509 0.18 11.28
64 R4l 37347 0.34 21.59
64 R1E 7246 0.07 4.19
64 R2E 6689 0.06 3.87
64 Total 110719 1.00 64.00

TABLE B-12. Forney AAF Weighted PCI 1996

PCI Feature Area WEIGHT WT X PCI
(1) (2) (3) 4) (5)
13 A2B 5295 0.03 0.40
39 A1B 20581 0.12 4.69
28 R1A 7246 0.04 1.19
34 R2A 26199 0.15 5.20
32 R3A 44245 0.26 8.27
46 R4A 7037 0.04 1.89
32 T1A-P 58808 0.34 10.99
57 T2B 1394 0.01 0.46
42 T3B 404 0.00 0.10
35.89 Total 171210 1.00 33.19
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TABLE B-13. Hood AAF Weighted PCI 1984

PCI Feature Area WEIGHT WT X PCl
1 (2) (3) 4) (5)
100 A15E 16723 0.10 10.46
100 A19E 13936 0.09 8.72
100 A21E 14865 0.09 9.30
43 R1E 14716 0.09 3.96
85 R2E 13378 0.08 7.11
82 Ra3l 21579 0.13 11.07
83 R4E 13378 0.08 6.95
100 T1E-1-P 8175 0.05 5.11
76 T2E 13006 0.08 6.18
85 T3E 9058 0.06 4.82
62 T4E 5871 0.04 2.28
100 T5E 2601 0.02 1.63
92 T6E 1598 0.01 0.92
100 T7E-P 3345 0.02 2.09
84 T8E-P 3901 0.02 2.05
76 TOE 3716 0.02 1.77
85.5 Total 159845 1.00 84.42
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TABLE B-14. Hood AAF Weighted PCI 1988

PCI Feature Area WEIGHT WT X PClI
(1) (2) (3) (4) (5)

74 A15E 16723 0.06 4.55
89 A19E 13936 0.05 4.56
98 A21E 14865 0.05 5.36
64 A23E 1742 0.01 0.41
40 A24E 1858 0.01 0.27
65 A2E 8361 0.03 2.00
66 A3E 4646 0.02 1.13
71 A4E 1742 0.01 0.45
72 ASE 32051 0.12 8.49
95 ABE 53512 0.20 18.70
40 R1E 14716 0.05 217
68 R2E 13378 0.05 3.35
72 R3l 21579 0.08 572
72 R4E 13378 0.05 3.54
100 T10E-1 929 0.00 0.34
83 T10E-2 1022 0.00 0.31
100 T11E 1486 0.01 0.55
99 T12E 8547 0.03 3.11
88 T1E-1-P 8175 0.03 2.65
100 T1E-2 1951 0.01 0.72
73 T2E 13006 0.05 3.49
76 T3E 9058 0.03 2.53
78 TSE 2601 0.01 0.75
89 T6E 1598 0.01 0.52
96 T7E-P 3345 0.01 1.18
93 T8E-P 3901 0.01 1.33
72 TOE 3716 0.01 0.98

79 Total 271822 1.00 79.18




TABLE B-15. Hood AAF Weighted PCT 1993

PCI Feature Area WEIGHT WT XPCI
1) (2) (3) (4) ()
69 A15E 16723 0.06 4.24
67 A19E 13936 0.05 3.43
94 A21E 14865 0.05 5.14
64 A23E 1742 0.01 0.41
92 A24E 1858 0.01 0.63
65 A2E 8361 0.03 2.00
65 A3E 4646 0.02 1.1
69 A4E 1742 0.01 0.44
69 ASE 32051 0.12 8.14
87 ABE 53512 0.20 17.13
28 R1E 14716 0.05 1.52
69 R2E 13378 0.05 3.40
69 R3l 21579 0.08 5.48
69 R4E 13378 0.05 3.40
88 T10E-1 929 0.00 0.30
76 T10E-2 1022 0.00 0.29
94 T11E 1486 0.01 0.51
95 T12E 8547 0.03 2.99
63 T1E-1-P 8175 0.03 1.89
100 T1E-2 1951 0.01 0.72
67 T2E 13006 0.05 3.21
70 T3E 9058 0.03 2.33
71 T5E 2601 0.01 0.68
69 T6E 1598 0.01 0.41
69 T7E-P 3345 0.01 0.85
65 T8E-P 3901 0.01 0.93
69 TOE 3716 0.01 0.94
73.04 Total 271822 1.00 72.51
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TABLE B-16. Hunter AAF Weighted PCI 1982

PCI Feature Area WEIGHT WT X PCI
(1) (2) (3) 4) (5)
46 A1E 9511 0.02 0.69
46 A7E 19626 0.03 1.42
46 ABE 32127 0.05 2.33
46 A10E 29119 0.05 2.1
46 A12E 3693 0.01 0.27
46 A13E 17866 0.03 1.30
64 A17E 16781 0.03 1.69
64 A19E 45465 0.07 4.59
46 A20E 28972 0.05 2.10
98 A21E 11148 0.02 1.72
93 A30E 51329 0.08 7.53
94 R3E 14864 0.02 2.20
97 R4i 156078 0.25 23.89
99 R5E 18580 0.03 2.90
68 T1E-P 10214 0.02 1.10
79 T2E 6271 0.01 0.78
88 T3E 11148 0.02 1.55
74 T4E-1 4877 0.01 0.57
89 T4E-2 3716 0.01 0.52
78 T5E 27871 0.04 3.43
100 T6E 4528 0.01 0.71
65 T8E-P 25084 0.04 2.57
56 TOE-P 15236 0.02 1.35
62 T10E 69677 0.1 6.82

70.42 TOTAL 633783 1.00 74.16




TABLE B-17. Hunter AAF Weighted PCI 1986

PCI Feature Area WEIGHT WT XPCI
(1) (2) (3) (4) (5)
84 A1E 9511 0.02 1.38
98 A7E 19626 0.03 3.32
95 AS8E 32127 0.06 5.27
100 A17E 16781 0.03 2.90
90 A19E 45465 0.08 7.06
96 A20E 28972 0.05 4.80
98 A21E 11148 0.02 1.89
93 A30E 51329 0.09 8.24
86 R3E 14864 0.03 2.21
85 R4l 156078 0.27 22.90
91 RSE 18580 0.03 2.92
79 T1E-P 10214 0.02 1.39
83 T2E 6271 0.01 0.90
87 T3E 11148 0.02 1.67
74 T4E-1 4877 0.01 0.62
83 T5E 27871 0.05 3.99
94 T6E 4528 0.01 0.73
73 T8E-P 25084 0.04 3.16
83 TOE-P 15236 0.03 2.18
86 T10E 69677 0.12 10.34

87.9 TOTAL 579388 1.00 87.87
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TABLE B-18. Hunter AAF Weighted PCI 1993
PC! Feature Area WEIGHT WT X PCI
(1 (2) (3) (4) (5)

83 A1E 9511 0.02 1.38
85 ATE 19626 0.03 2.92
68 A8SE 32127 0.06 3.82
89 A17E 16781 0.03 261
78 A1SE 45465 0.08 6.20
85 A20E 28972 0.05 4.31
93 A21E 11148 0.02 1.81
81 A30E 51329 0.09 7.27
80 R3E 14864 0.03 2.08
63 R4l 156078 0.27 17.19
73 R5E 18580 0.03 2.37
74 T1E-P 10214 0.02 1.32
65 T2E 6271 0.01 0.7
64 T4E-1 4877 0.01 0.55
67 T4E-2 3716 0.01 0.44
86 TSE 27871 0.05 4.19
88 T6E 4528 0.01 0.70
67 T8E-P 25084 0.04 2.94
77 TOE-P 15236 0.03 2.05
80 T10E 69677 0.12 9.75

77.3 TOTAL 571956 1.00 74.60




TABLE B-19. Libby AAF Weighted PCI 1987

PCI Feature Area WEIGHT WT XPCI
@) (2) 3) (4) (5)
24 R10E 0 0.00 0.00
12 R11I 13935 0.04 0.54

100 R12] 2090 0.01 0.67

100 R13E 6967 0.02 2.24
96 R3l 126813 0.41 39.18

100 R6E 9290 0.03 2.99

100 R71 12077 0.04 3.89
72 R8I 19509 0.06 4.52
40 RSE 7432 0.02 0.96
96 T2E 6529 0.02 2.02
98 T3E 3484 0.01 1.10

100 T4E 6529 0.02 2.10
64 T4E-2 5574 0.02 1.15
82 T5E 5216 0.02 1.38
32 T7E 6875 0.02 0.71
49 T8E 6804 0.02 1.07
74 TOE 780 0.00 0.19

6 T10E-P 13471 0.04 0.26

100 T11E 5342 0.02 1.72

37 A10E 6178 0.02 0.74
8 A11E 1821 0.01 0.05
3 AB6E 40970 0.13 0.40

46 A9E 3057 0.01 0.45

62.57 TOTAL 310744 1.00 68.30

TABLE B-20. Libby AAF Weighted PCI 1995

PCI Feature Area WEIGHT WT X PCi
(1) (2) (3) 4) (5)
70 R6A 9290 0.14 10.00
42 R7C 25084 0.39 16.20
85 R8C 6503 0.10 8.50
76 R9A 9290 0.14 10.86
92 T7B 5500 0.08 7.78
62 T8B 8505 0.13 8.11
46 T9B 844 0.01 0.60
67.57 TOTAL 65016 1.00 62.06
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TABLE B-21. Los Alamitos AAF Weighted PCI 1985
PCI Feature Area WEIGHT WT X PCI
(1 (2) (3 (4) (5

45 A1E 34337 0.09 3.83
46 A4E 3028 0.01 0.35
73 R10E 10870 0.03 1.97
57 R11E 17628 0.04 2.49
56 R12E 10172 0.03 1.41
57 R1E 15879 0.04 2.26
31 Ral 77295 0.19 5.95
51 R4l 35117 0.09 444
67 R6E 13935 0.03 2.32
63 R71 55741 0.14 8.71
60 R8E 5017 0.01 0.75
49 T11E-P 4877 0.01 0.59
36 T12E 10870 0.03 0.97
37 T13E 6236 0.02 0.57
60 T14E 4250 0.01 0.63
59 T15E 13378 0.03 1.96
68 T16E-P 15956 0.04 2.69
58 T17E-P 5156 0.01 0.74
72 T18E 1393 0.00 0.25
67 T2E-P 18360 0.05 3.05
42 T3E-P 6875 0.02 0.72
94 T4E-P 13006 0.03 3.03
69 T6E-P 18116 0.04 3.10
81 T7E-P 1010 0.00 0.20
64 T8E-P 1031 0.00 0.16
69 TOE 3414 0.01 0.58

58.88 Total 403047 1.00 53.74
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TABLE B-22. Los Alamitos AAF Weighted PCI 1990

PCI Feature Area WEIGHT WT X PCI
(&) (2) (3) 4) (5)

42 A1E 34337 0.09 3.67
42 A4E 3028 0.01 0.32
48 R10E 10870 0.03 1.33
34 R11E 17628 0.04 1.63
28 R1E 15979 0.04 1.14
99 R3I 77295 0.20 19.48
100 R4l 35117 0.09 8.94
48 R6E 13935 0.04 1.70
46 R7I 55741 0.14 6.53
47 R8E 5017 0.01 0.60
48 T11E-P 4877 0.01 0.60
15 T12E 10870 0.03 0.42
12 T13E 6236 0.02 0.19
39 T14E 4250 0.01 0.42

47 T18E 13378 0.03 1.60
37 T16E-P 15956 0.04 1.50
36 T17E-P 5156 0.01 0.47
56 T18E 1393 0.00 0.20
18 T2E-P 18360 0.05 0.84
15 T3E-P 6875 0.02 0.26

82 T4E-P 13006 0.03 2.7

25 T6E-P 18116 0.05 1.15
23 T7E-P 1010 0.00 0.06
16 T8E-P 1031 0.00 0.04
53 TOE 3414 0.01 0.46

42.24 Total 392874 1.00 56.16
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TABLE B-23. Los Alamitos AAF Weighted PCI 1993

PCI Feature Area WEIGHT WT X PCI
(1) (2) (3) (4) (5)
100 A1E 34337 0.09 8.52
42 A4E 3028 0.01 0.32
10 R10E 10870 0.03 0.27
22 R11E 17628 0.04 0.96
20 R12E 10172 0.03 0.50
22 R1E 15979 0.04 0.87
92 R3I 77295 0.19 17.64
g9 R4l 35117 0.09 8.63
100 R6E 13935 0.03 3.46
100 R71 55741 0.14 13.83
100 R8E 5017 0.01 1.24
40 T11E-P 4877 0.01 0.48
3 T12E 10870 0.03 0.08
100 T13E 6236 0.02 1.55
100 T14E 4250 0.01 1.056
100 T15E 13378 0.03 3.32
5 T16E-P 15956 0.04 0.20
20 T17E-P 5156 0.01 0.26
100 T18E 1393 0.00 0.35
25 T2E-P 18360 0.05 1.14
84 T3E-P 6875 0.02 1.43
100 T4E-P 13006 0.03 3.23
100 T6E-P 18116 0.04 4.49
100 T7E-P 1010 0.00 0.25
100 T8E-P 1031 0.00 0.26
100 T9E 3414 0.01 0.85

68.62 Total 403047 1.00 75.18




TABLE B-24. Marshall AAF PCIs for 1983, 1987 and 1994

Year PCI Feature Area
(1) (2) (3) (4)
1983 43 A6E 8916
1987 41 AGE 8916
1994 33 ABE 8916

TABLE B-25. McCoy AAF Weighted PCI 1985

PCI Feature Area WEIGHT WT X PCI
(1) (2) (3) (4) (5)
61 A1E 8325 0.13 7.82
72 A2E 10219 0.16 11.33
81 R4E 16723 0.26 20.85
81 R5E 9290 0.14 11.59
84 R6E 6386 0.10 8.26
66 T1E-P 6735 0.10 6.84
65 T2E-P 2090 0.03 2.09
77 T3E 2229 0.03 2.64
86 T4E 1765 0.03 2.34
79 T5E 1189 0.02 1.45

75.2 Total 64951 1.00 75.21

TABLE B-26. McCoy AAF Weighted PCI 1993

PCI Feature Area WEIGHT WT XPCI
(1) (2) (3) (4) (5)
84 A1E 8325 0.07 5.66
87 A2E 10219 0.08 7.20
75 A3E 4334 0.04 2.63
70 A4E 4181 0.03 2.37
99 R2E 39019 0.32 31.29
91 R4E 16723 0.14 12.33
95 R5E 9290 0.08 7.15
98 R6E 6386 0.05 5.07
71 T1E-P 6735 0.05 3.87
75 T2E-P 2090 0.02 1.27
91 T3E 2229 0.02 1.64
95 T4E 1765 0.01 1.36
85 T5E 1189 0.01 0.82
99 T6E-P 7343 0.06 5.89
75 T7E-P 3620 0.03 2.20
86 Total 123448 1.00 90.76
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TABLE B-27. Muir AAF Weighted PCI 1987

PCI Feature Area WEIGHT WT X PCI
(1) (2) (3) 4) (3)
87 A1E 870 0.01 0.86
52 A2E 1568 0.02 0.92
43 A3E 3019 0.03 1.47
63 A4E 1568 0.02 1.12
95 ABE 4181 0.05 4.50
62 R1E 30843 0.35 21.67
84 T1E 1568 0.02 1.49
58 T2E-P 4988 0.06 3.28
98 T3E-P 5161 0.06 5.73
55 T4E-P 15004 0.17 9.35
96 T5E 5518 0.06 6.00
39 T6E 3874 0.04 1.71
63 T7E 7200 0.08 5.14
86 T8E 2903 0.03 2.83
70.07 Total 88265 1.00 66.07

TABLE B-28. Muir AAF Weighted PCI 1993

PCli Feature Area WEIGHT WTXPCI
(1) (2 (3) (4) (5)
66 A1E 870 0.01 0.64
49 A2E 1568 0.02 0.86
63 AdE 1568 0.02 1.10
72 ABE 4181 0.05 3.37
55 R1E 30843 0.34 18.97
51 T1E 1568 0.02 0.89
31 T2E-P 4988 0.06 1.73
98 T3E-P 5161 0.06 5.66
35 T4E-P 15004 0.17 5.87
96 T5E 5518 0.06 5.92
25 T6E 3874 0.04 1.08
38 T7E 7200 0.08 3.06
85 T8E 2903 0.03 2.76
97 TOE 4181 0.05 4,53

61.5 Total 89426 1.00 56.45
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TABLE B-29. Phillips AAF Weighted PCI 1986

PCI Feature Area WEIGHT WT X PCl

(1) (2) () (4) (6
30 A2E 11288 0.03 0.79
99 A3E 29729 0.07 6.83
17 A4E 4366 0.01 0.17
46 R10E 4877 0.01 0.52
37 R11E 2787 0.01 0.24
45 R12l 39391 0.09 4.11
41 R13E 11148 0.03 1.06
39 R14E 2787 0.01 0.25
38 R15E 1742 0.00 0.15
40 R16E 12193 0.03 1.13
42 R17I 35628 0.08 3.47
42 R18E 9754 0.02 0.95
9 R19E 4181 0.01 0.0
96 R1E 18580 0.04 4.09
97 R2l 20438 0.05 4.60
100 R3i 76924 0.18 17.84
94 R4l 14121 0.03 3.08
o7 RSI 11148 0.03 2.51
100 R6l 14864 0.03 3.45
69 R7I 38833 0.09 6.21
100 R8E 18580 0.04 4.31
Ky RSE 4877 0.01 0.35
48 T1E-P 9058 0.02 1.01
98 T2E-P 9627 0.02 2.19
47 T3E-P 14110 0.03 1.54
99 T4E 6967 0.02 1.60
49 TSE 3158 0.01 0.36

61.07  Total 431157 1.00 72.90
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TABLE B-30. Phillips AAF Weighted PCI 1993
PCI Feature Area WEIGHT WT X PCI
1N (2) (3 4) (5

8 A2E 11288 0.03 0.21
86 A3E 29729 0.07 5.99
14 A4E 4366 0.01 0.14
45 R10E 4877 0.01 0.51
40 R11E 2787 0.01 0.26
40 R12I 39391 0.09 3.69
40 R13E 11148 0.03 1.04
39 R14E 2787 0.01 0.25
40 R15E 1742 0.00 0.16
36 R16E 12193 0.03 1.03
44 R171 35628 0.08 3.67
41 R18E 9754 0.02 0.94
55 R1E 18580 0.04 2.39
87 R2I 20438 0.05 4.16
83 R3l 76924 0.18 14.95
70 R4l 14121 0.03 2.31
84 RSI 11148 0.03 2.19
73 Ré6l 14864 0.03 2.54
69 R7 38833 0.09 6.28
o7 R8E 18580 0.04 422
31 ROE 4877 0.01 0.35
46 T1E-P 9058 0.02 0.98
83 T2E-P 9627 0.02 1.87
47 T3E-P 14110 0.03 1.55
74 T4E 6967 0.02 1.21
46 TSE 3158 0.01 0.34

54.54 Total 426977 1.00 63.27

TABLE B-31. Redstone AAF Weighted PCI 1987

PCl Feature Area WEIGHT WT X PCI
(1) (2) (3) (4) (5)

42 R2E 69677 0.65 27.33
36 R3E 6567 0.06 2.21
36 R4E 20206 0.19 6.79
44 T1E-P 3112 0.03 1.28
40 T2E-P 3112 0.03 1.16
71 T3E 2550 0.02 1.69
85 T4E 1858 0.02 1.47

50.57 TOTAL 107082 1.00 41.94
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TABLE B-32. Redstone AAF Weighted PCI 1993

PCI Feature Area WEIGHT WT X PCI
(1) (2) (3) (4) ()

94 R2E 69677 0.65 61.16
81 R3E 6567 0.06 4.97
93 R4E 20206 0.19 17.55
02 T1E-P 3112 0.03 2.67
94 T2E-P 3112 0.03 2.73
55 T3E 2550 0.02 1.31
68 T4E 1858 0.02 1.18
8243 TOTAL 107082 1.00 91.58

TABLE B-33. Selah AAF Weighted PCI 1985

PCI Feature Area WEIGHT WT X PCli

(1) (2) (3) (4) (5)
76 A1E 2391 0.04 3.19
80 R1E 850 0.01 1.19
68 R2E 4891 0.09 5.84
60 R3E 1226 0.02 1.29
59 R4l 10772 0.19 11.15
69 RSI 1191 0.02 1.44
70 R6l 6612 0.12 8.12
75 R7E 933 0.02 1.23
75 R8E 3483 0.06 4.59
79 ROE 2550 0.04 3.54
75 T1E-P 5786 0.10 7.62
71 T2E-P 13896 0.24 17.32
69 T3E-P 2391 0.04 2.90

71.23 Total 56974 1.00 69.41




TABLE B-34. Selah AAF Weighted PCI 1994

PCI Feature Area WEIGHT WT X PCl
(1) (2) (3) (4) (5)
67 A1E 2391 0.04 2.81
60 R1E 850 0.01 0.89
40 R2E 4891 0.09 3.43
21 R3E 1226 0.02 0.45
33 R4l 10772 0.19 6.24
52 R5I 1191 0.02 1.09
48 R6I 6612 0.12 5.57
61 R7E 933 0.02 1.00
72 R8E 3483 0.06 4.40
76 ROE 2550 0.04 3.40
62 T1E-P 5786 0.10 6.30
51 T2E-P 13896 0.24 12.44
64 T3E-P 2391 0.04 2.69
54.38 Total 56974 1.00 50.71

TABLE B-35. Simmons AAF Weighted PCI 1985

PCI Feature Area WEIGHT WT X PCI
(1) (2) 3) (4) (5)
96 R1E 4645 0.04 425
90 R2E 4645 0.04 3.98
93 R3I 14865 0.14 13.17
95 R4E 4645 0.04 420
94 R5E 4645 0.04 4.16
79 T1E-P 20903 0.20 156.73
92 T3E 6968 0.07 6.11
70 TAE 2323 0.02 1.55
69 T5E-P 2323 0.02 1.83
93 T12E 13936 0.13 12.35
46 A2E 25084 0.24 10.99

83.36 TOTAL 104981 1.00 78.01
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TABLE B-36. Simmons AAF Weighted PCI 1989

PCl Feature Area WEIGHT WT X PCI
()] (2) (3) 4) (5)

70 R1E 4645 0.04 2.67
63 R2E 4645 0.04 2.40
57 R3I 14865 0.12 6.95
63 R4E 4645 0.04 2.40
54 R5E 4645 0.04 2.06
53 T1E-P 20903 0.17 9.08
66 T3E 6968 0.06 3.77
42 T4E 2323 0.02 0.80
40 TSE-P 2323 0.02 0.76
63 T12E 13936 0.1 7.20
100 T13E 3345 0.03 2.74
100 T14E 8083 0.07 6.63
100 T158E 5574 0.05 4.57
46 A2E 25084 0.21 9.46

65.5 TOTAL 121982 1.00 61.47
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TABLE B-37. Simmons AAF Weighted PCI 1993
PCl Feature Area WEIGHT WT X PClI
(@) (2) (3) (4) (5)

100 R1E 4645 0.04 3.96
100 R2E 4645 0.04 3.96
100 R3I 14865 0.13 12.68
100 R4E 4645 0.04 3.96
100 RSE 4645 0.04 3.96
91 T1E-P 20903 0.18 16.22
98 T3E 6968 0.06 5.82
94 T4E 2323 0.02 1.86
89 TSE-P 2323 0.02 1.76
79 T13E 3345 0.03 225
84 T14E 8083 0.07 5.79
87 T18E 5574 0.056 4.14
99 T16E 9197 0.08 777
97 A2E 25084 0.21 20.75
94.14 TOTAL 117244 1.00 94.90

TABLE B-38. Wheeler-Sack AAF Weighted PCI 1985

PCI Feature Area WEIGHT WT X PCI
(W) (2) (3 (4) (5

63 T1E-P 17768 0.25 15.72
64 T2E-P 5039 0.07 453
64 T3E 2787 0.04 2.50
62 T5E-P 37263 0.52 32.44
64 T7E-P 8361 0.12 7.51

63 Total 71218 1.00 62.70




TABLE B-39. Wheeler-Sack AAF Weighted PCI 1993

PCl Feature Area WEIGHT WT X PCI
(1 (2) (3) 4) (5)

100 T10E-P 16329 0.12 11.61
100 TH11E-P 3233 0.02 245
100 T12E-P 8436 0.06 6.39
100 T13E 2044 0.02 1.55
100 T14E 24396 0.18 18.47
100 T15E-P 2568 0.02 1.94
74 T1E-P 17768 0.13 9.96
46 T2E 5039 0.04 1.76
44 T3E 2787 0.02 0.93
87 T5E-P 37263 0.28 24.55
100 T7E-P 8361 0.06 6.33
100 T8E-P 3345 0.03 2.53
100 TO9E 1486 0.01 1.13

88.54 Total 132055 1.00 89.59
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APPENDIX C

CONSTRUCTION DATA

The tables in this appendix contain summary construction data from the
pavement evaluation reports. The construction data listed includes thickness in
millimeters of the asphalt concrete thickness, base, subbase (if any), and overlays (if
any). Also listed for each feature is the base, subbase (if any) and subgrade type, as
reported in the evaluation report. The final columns list construction dates, including

original construction and when any overlays were placed.

The material types listed in the tables are as reported in the evaluation reports.
Some of the materials are described in terms of the unified soil classification system.
Following is a list of the unified soil classification letter abbreviations and the word
descriptions for the material types listed in the tables in this appendix: GW — well graded
gravel, GP — poorly graded gravel, GC — clayey gravel, GM - silty gravel, SP — poorly
graded sand, SC — clayey sand, SM - silty sand, ML — low plasticity silt, CL — low

plasticity clay, and CH — high plasticity clay.
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APPENDIX D

DISTRESS DENSITY VERSUS DEDUCT VALUE CURVES

The figures contained in this appendix show the distress density in percent versus
deduct curves for all of the distress types considered on asphalt concrete Army airfield
pavements. The figures show the curves for low medium and high severity levels for

those distress types that consider different severity levels.
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FIG D-1. Alligator Cracking Distress Density versus Deduct Curves
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FIG D-2. Bleeding Distress Density versus Deduct Curves
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FIG D-3. Block Cracking Distress Density versus Deduct Curves

Corrugation
100 kA~

90 i N
o 38 High a u
3 60 . A edium |
S A = .
- 5 A ¢
g *A‘ n - ® Low
g 40 A -." .Q—.
O 30— A

" v
20 —‘t—‘—‘—~—.—.—09 hd
10488 qun ™ o0
0 E’s e’
0.1 1 10 100
Distress Density, Percent

FIG D-4. Corrugation Distress Density versus Deduct Curves
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FIG D-6. Jet Blast Distress Density versus Deduct Curves
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FIG D-7. Joint Reflective Cracking Distress Density versus Deduct Curves

FIG D-8. Longitudinal/Transverse Cracking Distress Density versus Deduct

Curves
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Oil Spillage
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FIG D-9. Oil Spillage Distress Density versus Deduct Curve
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FIG D-10. Patching and Utility Cut Distress Density versus Deduct Curve
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FIG D-11. Polished Aggregate Distress Density versus Deduct Curve
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FIG D-12. Raveling/Weathering Distress Density versus Deduct Curve
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Shoving of AC by PCC
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FIG D-14. Shoving of AC by PCC Distress Density versus Deduct Curve
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FIG D-15. Slippage Cracking Distress Density versus Deduct Curve
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FIG D-16. Swell Distress Density versus Deduct Curve
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APPENDIX E

WEIBULL DISTRIBUTION ANALYSIS

This appendix contains the regression analysis and application of reliability using
the Weibull CDF as opposed to the Gumbel CDF, which was presented in the body of
the work. The purposes for including this analysis are for comparison and

documentation.

The Weibull probability density function (PDF) has the form:

F(t)= apt®Dexp(-pt*), t=0,a=0,p>0 (E-1)

Where:

t=time

o = Weibull shape parameter

B = Weibull scaling parameter
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The cumulative distribution function (CDF) is obtained by integrating the PDF

and can be expressed as follows:

F(t)=1-exp(-f t*) (E-2)

The CDF ranges from zero to one. By multiplying the CDF by a factor it can be
made to range from zero to any value required. A multiplying value of 100 is selected as
the maximum amount of distress density achievable. Therefore the distress density at

any given time will be a function of the Weibull CDF as shown in Equation E-3.

DD, =100 [1 —exp(-B t*)] (E-3)
Where:

DD, = the distress density of a particular distress at some time t

Field data were fit to the performance equation as was done for the Gumbel CDF.
Table E-1 shows the results of the shape and scale parameter determinations for block
cracking. The same features that were used to determine Gumbel parameters were used
to determine Weibull parameters. Tables E-2 and E-3 show the Weibull shape
parameters determined for features with longitudinal/transverse cracking and

raveling/weathering, respectively.
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TABLE E-1. Results of Weibull CDF Parameter Determinations for Block

Cracking

Airfield Feature S/P o B

0] (2) (3) (4) (5)

Biggs ASE S 2.1 0.015
Cairns T8E S 3 0.00015
Cairns T11E S 2.2 0.0001
Hunter R5E P 2.1 0.001
Hunter T1E P 2 0.001
Hunter T8E P 0.78 0.05
Hunter T9E P 1.8 0.001
Wheeler-Sack T2E S 3.8 0.0001
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TABLE E-2. Results of CDF Weibull Parameter Determinations for
Longitudinal/Transverse Cracking

Airfield Feature S/P a B
(1) (2) (3) (4) (5)

Butts R2E P 1.7 0.0015
Butts R3E P 1.8 0.0015
Butts R4l P 1.8 0.0015
Butts R5E P 17 0.0015
Butts R6E P 1.8 0.0015
Caimns R6I P 2.3 0.0001
Cairns T1E P 2.3 0.0001
Cairns T4E P 1.9 0.0001
Cairns T8E S 26 0.0001
Cairns T9E S 25 0.0001
Cairns T10E S 2.4 0.0001
Cairns T12E S 1.8 0.0001
Cairns AGE S 2.4 0.0001
Cairns A10E S 2.7 0.0001
Cairns A11E S 2.4 0.0001
Cairns A12E S 1.7 0.0001
Hood A19E S 2.4 0.0001
Hood A21E S 1.8 0.0001
Hood ASE S 1.5 0.0001
Hood T6E S 2.5 0.0001
Hunter TOE P 3.6 0.00001
Hunter A7TE S 2.5 0.0001
Hunter ASE S 2.8 0.00001
Hunter A19E S 2.3 0.0001
Hunter A30E S 2.6 0.0001
Hunter T6E S 2.3 0.0001
Hunter T10E S 3.4 0.00001
Phillips R2I P 2 0.0001
Phillips R4l P 2.6 0.0001
Phiilips R5I P 2.3 0.0001
Phillips T2E P 2.4 0.0001
Phitlips T4E S 1.9 0.0001
Selah R8E P 0.5 0.015
Selah A1E S 0.6 0.01
Simmons R1E P 2.8 0.0001
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TABLE E-3. Results of Weibull Shape Parameter Determinations for

Raveling/Weathering
Airfield Feature S/P o B

(1) (2) ) (4) (5)
Cairns T4E P 3.9 0.00001
Cairns - TOE S 4 0.00001
Cairns T10E S 3.9 0.00001
Cairns T11E S 5.7 1E-07
Cairns A11E S 1.7 0.01
Hood A1SE S 34 0.0001
Hood T3E S 1.2 0.01
Hood T5E S 14 0.01

The next step in the model development was to regress the o and  parameters
against the independent variables. However, before this was done, the parameters and
independent variables were evaluated for correlation. The results of the correlation
analyses for block cracking, longitudinal/transverse cracking and raveling and

weathering are shown in Tables E-4, E-5 and E-6, respectively.
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The first observation made based on the correlation analyses are that the
dependent variables, o and B, are negatively correlated to each other in all three cases.
This observation indicates that any independent variable that effects one parameter,
should have the opposite effect on the other parameter. Also, any parameter deemed
appropriate for inclusion with one variable should be used for analysis with both

parameters.

As for the Gumbel analysis, sky cover and cooling degree days were used to
capture the effects of solar radiation and heating degree days in any regression analysis

for which these factors were deemed appropriate.

Regression Analysis for Block Cracking
The independent variables that are considered appropriate as having an effect on

block cracking are the same as the ones used for the Gumbel analyses.

Forward stepwise linear regression analyses were performed comparing o and
to the appropriate independent variables. The independent variables were entered into
the forward stepwise regression procedure in order of greatest value of correlation
coefficient to least value. Variables that had a P value greater than .1, indicating they
were not significant at the 90 percent level, were removed as the steps progressed. The
recommended forms of the equations relating the independent variables to the dependent

variables are shown in equations E-4 and E-5. Equation E-5 relates log(p) to the
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independent variables. Because the B values were observed to range over values of

several orders of magnitude, a log relationship was examined and it provided more

consistent results.
o =366 —0.184 (RC) —0.000402 (CDD) + 0.186 (SC) (E-4)
Log(B) =-691 + 0.351 (RC) - 0.00217 (CDD) - 0.808 (SC) (E-5)
Where:

RC = The most recent construction date (calendar year)
CDD = Cooling degree days (deg C)

SC = Sky cover (tenths)

Reviewing equations E-4 and E-5 shows that the independent variables have
different signs in each equation, except CDD, indicating their influence is opposite on
each dependent variable. The reason the signs were the same for the CDD variable in
both equations was because of the relatively little influence the CDD had in the a
equation. However, the CDD variable improved the R? for the B equation enough to
make it worth including. As stated previously, any independent variable used to predict

one dependent variable would be used for both dependent variables.
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A sensitivity analysis was performed on equations E-4 and E-5 to determine the
effect of each independent variable. Table E-7 summarizes the sensitivity analysis. The
sensitivity analysis included the following: the means of each variable, the extremes of
each variable with the means of the other variables, and the extremes of each variable.

The resulting o. and P are presented in the last two columns of Table E-7.

TABLE E-7. Summary of Sensitivity Analysis for Equations 5 and 6

RC CDD sC a B
(1) 2) (3) (4) (5)
1981 1200 5.7 2.26 0.00089
1976 1200 5.7 3.18 1.6E-05
1984 1200 57 1.71 0.010
1981 308 57 2.62 0.077
1981 1391 5.7 2.18 0.00034
1981 1200 3.8 1.91 0.030
1981 1200 71 2.52 6.6E-05
1976 308 3.8 3.19 0.046
1984 1391 7.1 1.89 0.00028

The values obtained for o and B over the range of data are within the ranges of
values observed. Therefore the equations provide reasonable estimations within the

limits over which they were developed.
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Regression Analysis for Longitudinal/Transverse Cracking
The independent variables that are considered appropriate as having an effect on

longitudinal/transverse cracking are the same ones used for the Gumbel analyses.

Forward stepwise linear regression procedures were conducted to determine the
most suitable equations for predicting the dependent variables. The regression equations
recommended for predicting o and B for longitudinal/transverse cracking are shown in

equations E-6 and E-7, respectively.

o, = -5.39 — 0.0000340(EP) + 0.000525(CDD) + 1.03(SC) + 0.425(WS) (E-6)

Log(B) = 6.77 + 0.0000322(EP) — 0.000998(CDD) — 1.42(SC) — 0.509(WS) (E-7)

Where:
EP = Evaluation pass level
CDD = Cooling degree days (deg C)
SC = Sky Cover (tenths)

WS = Wind speed (m/s)
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As expected, the signs for each variable in the o equation are opposite the sign in
the B equation. The log(B) was used as for the block cracking distress because of the
range in values of B observed. Transformations of some of the independent variables

such log (EP) were evaluated, but none of the transformations provided an increased R%.

A sensitivity analysis was performed on the regression equations. The results of

the sensitivity analysis is shown in Table E-8.

TABLE E-8. Summary of Sensitivity Analysis for Equations 6 and 7

EP CDD SC WS o B
(1) () (3) (4) (5) (6)
11000 1040 5.7 3.6 219 0.00016
1500 1040 5.7 3.6 2.51 7.83E-05
50000 1040 5.7 36 0.86 0.0029
11000 1040 5.7 3.6 1.78 0.00083
11000 270 5.7 3.6 249 4.2E-05
11000 1618 5.3 3.6 1.80 0.00055
11000 1040 5.9 3.6 242 7.73E-05
11000 1040 5.7 29 1.88 0.00038
11000 1040 5.7 5.0 277 3.22E-05
1500 270 5.3 2.9 1.40 0.0038

50000 1618 5.9 5.0 1.97 7.52E-05
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The results of the sensitivity analyses indicate the regression equations provide
values within the range of values observed for this distress type. The value of the o
parameter is changed by a magnitude of approximately 1.5 or less over the range of each
independent variable included. The B parameter changes by approximately 2 orders of

magnitude or less over the range of each independent variables.

Regression Analysis for Raveling/Weathering
The independent variables that are considered appropriate as having an effect on

raveling/weathering are the same ones that were used for the Gumbel analyses.

Forward stepwise regression was attempted for both o and B, the results were not
good. All of the analyses indicated that each independent variable had large P values
and that they should be removed from the model. The R? values were very low, with a
maximum value of 26 for the o relationship and 12 for the B relationship. The results of
these analyses indicate that either there were not enough data to determine a relationship
between the dependent and independent variables or that no relationship exists between
the independent and dependent variables. Whichever the case, an appropriate

relationship could not be developed based on the data available.
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A reliability analysis was performed similar to that used for the Gumbel model.
To determine the expected value and variance of o and B, the first order second moment
(FOSM) procedure was used. The relationships and model developed to predict the
distress density growth of block cracking were used as an example to demonstrate the

application of the procedures used to determine reliability.

The expected value and variance of a. for the block cracking model were 2.4 and
.39 respectively. The expected value of p was found to be 0.0012 and the variance of

was found to be 1.91E-05.

The Weibull CDF equation was rearranged so that time was the value being

calculated. The Weibull CDF equation in terms of t is shown in Equation E-8.

tere= [[In[(DD;-100)/(-100)])/-B] ~(1/cx) (E-8)

The Monte Carlo simulation technique was used to find the probability
distribution of time to DDyit. For a, a beta distribution with a mean of 2.4, a standard
deviation of .6, a minimum value of .01, and a maximum value of 4.79 was used. For j,
the exponential distribution with a mean of 0.002 was used. The results of the Monte

Carlo simulation are shown in Table E-9.
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TABLE E-9. Summary of Monte Carlo Simulation
Time (yrs) to Reach DD, For Different Levels of

DDgrit Number of
Replicates Confidence (P)
P=.1 P=.2 P=.25 P=.5
() 2) (3) (4) (5) (6)
11 500 5.3 6.0 6.5 8.9
1,000 5.2 6.0 6.4 8.3
10,000 5.2 6.0 6.3 8.4
66 500 11.5 14.0 15.4 23.3
1,000 11.6 13.9 15.0 21.6

10,000 11.6 13.8 14.9 21.5
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APPENDIX F

CURVE FITTING PROCEDURE

In order to fit field data to a cumulative density function (CDF) curve efficiently,
a spreadsheet, such as Excel® (Microsoft 1995), is required. Before the curve fitting
procedure begins, the field data must be converted to the medium severity distress
density for the particular distress being analyzed as discussed in Chapter V. The
appropriate regression equations for accomplishing this task are presented in Table 9. A
spreadsheet can be used to convert the different severity levels of field data to the
medium severity level distress density for each distress type. Figure F-1 shows the
layout of the headings and columns, which can be repeated as often as required, for
converting the field data to appropriate medium severity level distress density data.
Figure F-1 is presented in columnar format so that it can fit a standard page. Tables F-1,
F-2 and F-3 show the converted distress density data for those features that met the
criteria to be used in the remainder of the study (see Chapter V) for the distress types of

block cracking, longitudinal/transverse cracking, and raveling/weathering, respectively.



A B c D E
1 Distress Measured . Converted Total for Each
Type Quantity for | Regression | Medium Severity Distress
Feature Equation | pistress Density Density
” Z
2 | Low severity block X4 Ogggé( ;( * 1 Value of cell C2
cracking ' !
3 | Medium severity X2 Value of cell B3
block cracking -
. . . -.0899 X5* SUM
4 | High severity Xs Value of cell C4
| block cracking + 6.)%3481 (D2+D3+D4)
. _ 4
5| Low severity L/T Xa N ogégzxi Value of cell C5
' cracking '
‘6 | Medium severity Xs Value of cell B6
| L/T cracking -
7 | High severity LT Xe '11153(;"0);5)(: Value of cell B7 SUM
cracking ’ (D5+D6+D7)

8 | Repeat Rows for
' addition distress

types

Distress Density Values

TABLE F-1. Converted Distress Density Data for Block Cracking

FIG F-1. Spreadsheet Format for Converting Field Data to Medium Severity

Airfield Feature Time to DD, DD; Time to DD, DD,
(years) (percent) (years) (percent)
(1) (2) () (5) (6)

Biggs ASE 4 8.45 9 100.00

Cairns T8E 6 1.06 10 4.79

Cairns T11E 6 0.44 13 2.66

Hunter R5E 9 9.32 NA* NA*

Hunter T1E 2 0.37 9 7.52
Hunter T8E 2 7.34 9 23.60

Hunter TOE 2 0.15 9 5.03
Wheeler —Sack T2E 9 36.60 17 100.00

* No data were available for this feature for a second time period.
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TABLE F-2. Converted Distress Density Data for Longitudinal/Transverse

Cracking
Airfield Feature Timeto DD, Time to DD, Time to DD;
DD, (percent) DD, (percent) DD; (percent)

(years) (years) (years)

()] (2) ()] 4) (5) (6) (7) (&)
Butts R2E 3 1.54 7 4.17 NA* NA*
Bufts R3E 3 1.88 7 4.59 NA* NA*
Butts R4l 3 1.97 7 4.79 NA* NA*
Butts RS5E 3 1.85 7 427 NA* NA*
Butts R6E 3 2.06 7 5.03 NA* NA*

Cairns Ré! 6 0.46 10 1.92 NA* NA*
Cairns T1E 6 0.96 10 1.98 NA* NA*
Cairns T4E 6 0.48 10 1.04 13 1.18
Cairns T8E 6 1.08 10 3.94 NA* NA*
Cairns TOE 6 1.03 10 3.56 13 416
Cairns T10E 6 1.3 10 2.68 13 4.77
Cairns T12E 6 0.27 10 0.46 13 1.1
Cairns ASE 6 1.17 10 1.98 NA* NA*
Cairns A10E 3 0.01 7 3.08 10 4.05
Cairns A11E 2 0.53 6 1.31 9 1.44
Cairns A12E 7 0.1 10 0.68 NA* NA*
Hood A1SE 5 0.67 10 2.32 NA* NA*
Hood A21E 5 0.04 10 0.64 NA* NA*
Hood ABSE 4 1.562 9 1.72 NA* NA*
Hood T6E 4 0.32 8 1.56 NA* NA*
Hunter T9E 2 1.91 9 214 NA* NA*
Hunter ATE 2 0.01 9 2.33 NA* NA*
Hunter ABSE 2 0.31 9 04 NA* NA*
Hunter A19E 2 0.62 9 1.3 NA* NA*
Hunter A30E 2 0.37 9 2.81 NA* NA*
Hunter T6E 2 0.37 9 1.49 NA* NA*
Hunter T10E 2 1.56 9 2.01 NA* NA*
Phillips R2| 3 0.15 10 1.11 NA* NA*
Phillips R4l 3 0.14 10 3.79 NA* NA*
Phillips R5I 3 0.06 10 1.86 NA* NA*
Phillips T2E 3 0.05 10 2.36 NA* NA*
Phillips T4E 3 0.01 10 0.86 NA* NA*
Selah R8E 9 423 18 6.02 NA* NA*
Selah A1E 9 3.07 18 5.41 NA* NA*
Simmons RI1E 5 0.16 9 5 NA* NA*

*No data were available for these features for a third time period.
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TABLE F-3. Converted Distress Density Data for Raveling/Weathering

Airfield Feature Time to DD, DD, Time to DD, DD,
(years) (percent) (years) (percent)
1) (2) (3) (4) (5)

Cairns T4E 10 3.09 13 22.97
Cairns TOE 10 10.1 13 22.97
Cairns T10E 10 4.29 13 22,97
Caimns T11E 10 0.06 13 22.97
Cairns A11E 6 22.97 9 30.13
Hood A19E 5 212 10 22.97
Hood T3E 10 15.92 15 22.97
Hood TSE 5 12.16 10 22.97

The appropriate distress density values calculated for the distress under
consideration are used along with construction history data for fitting the field datato a
CDF curve. The construction history data required is the time from the last construction
date in years, which may be original construction, an overlay, or a maintenance project
which greatly improved the condition of the pavement feature, to the inspection date.
The date, in terms of the calendar year, when the condition survey(s) was performed
minus the construction date is the time to that data point. Tables F-1, F-2 and F-3 list the

time data with the appropriate distress density data.

Once the distress density data and accompanying time data are available, the field
data can be fitted to a CDF curve. If there has been more than one survey since the last
major construction project, all of the data should be used. Ideally, there should be at

Jeast two data points for use in “shaping” the CDF curve. It is convenient for viewing,



247

but not required, to set up a chart plotting the field data and the calculated curve as the

curve is being fitted to the field data.

Figure F-2 shows the spreadsheet layout with the formulas in the cells for
computing the CDF curve and comparing the field data to the model calculated data. For
this example, the Gumbel CDF is used. Column B, rows 7 and greater of Figure F-2,
contain the formula for determining the CDF at various points in time. The time value is
taken from column A. The field distress density values are listed in column C. There
may only be one or two field data values, and these values should be placed in the
appropriate cell corresponding to the time values in column A. Column D lists the
difference between the field data and CDF values. The shape and scale parameters in
cells C2 and C3 are adjusted by hand (increased and decreased) until the difference
between the calculated and measured distress density values (column D) are within

desired tolerances.



. A B c D

4}1 Gumbel CDF distress density | 100(exp(-(p/t)*(B)))

/ equation

2 Rho = p

f 3 Beta = B

4

5

jj6 Time Calculated Distress Density Field Distress Density | Calculated -
3 in (From Tables F-1, F-2 | Field Distress
| years and F-3) Density
7 3 =100(EXP(-(C2/AT)(C3))) D, B7-C7
:’8 2 =100(EXP(-(C2/A8)\(C3))) D, B8-C8

9 3 =100(EXP(-(C2/A9)\(C3))) Dj B9-C9
10 4 =100(EXP(-(C2/A10)*(C3))) Dy B10-C10
1 1 5 =100(EXP(-(C2/A11)A(C3))) Ds B11-C11
12 6 =100(EXP(-(C2/A12)A(C3))) Ds B12-C12
13 7 =100(EXP(-(C2/A13)2(C3))) Dy B13-C13
24 1 18 | =100(EXP(-(C2/A24)"(C3)) Dig B24-C24
26 1 19 =100(EXP(-C2/A25)*(C3))) Dyg B25-C25
26 20 =100(EXP(-(C2/A26)(C3))) Dy B26-C26

FIG F-2. Spreadsheet Format for Determining Weibull Shape Parameters
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If a plot of the curves is desired, the evaluator should plot the time (column A) as
the abscissa versus both the calculated and field distress density values (columns B and
C). If the Excel® Chart Wizard® is used, the selected chart type should be scatter plot.
The Chart Wizard® allows for the plot to be viewed with the data and is interactive; as
the p and P are adjusted, the chart is updated. This allows for the evaluator to view the
impact of changing the shape and scale parameters so that appropriate values can be
determined quickly. The values of p and B determined for each of the features in Tables
F-1, F-2 and F-3 are shown in Tables 11, 12 and 13 (see Chapter V). Figures F-3

through F-14 show examples of the field data plotted against the CDF curve.
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FIG F-4. Cairns AAF, T11E Field Block Cracking Distress Density Data and CDF
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APPENDIX G

GUMBEL PARAMETERS REGRESSION DATA

The first three tables in this appendix contain the dependent variables (p and B)

and the independent variables available to use in the regression analyses for the
respective distress types. The remaining tables contain the results of the regression
analyses for each dependent variable with the appropriate independent variables. The
summary of the regression analyses tables list the forward step, the independent
variables considered, the P-value associated with the independent variable, a
recommendation whether to keep the independent variable, and the R? of the linear

regression equation.
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TABLE G-4. Summary of Stepwise Regression for Gumbel p, Block Cracking
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Distress Type
Step Independent P-Value Recommended R*
Variable Action
@) (2) (3) (4) (5)
1 WS .0318 KEEP 56
2 WS .1305 KEEP 73
H20 .1461 REMOVE
3 WS .0047 KEEP 88
SN .0135 KEEP
4 WS .0179 KEEP 91
SN .0207 KEEP
CDD .3912 REMOVE
5 WS .0557 KEEP 91
SN .8682 REMOVE
SC .3912 KEEP
6 WS .0081 KEEP 91
SC .0080 KEEP
7 WS .0045 KEEP 91
SC .0310 KEEP
AC 7632 REMOVE
8 WS .0038 KEEP 91
SC .0189 KEEP
RC .8682 REMOVE
9 WS .0037 KEEP 91
SC .0192 KEEP
OoC .8682 REMOVE
10 H20 .8682 REMOVE 91
WS .0174 KEEP
SC .0499 KEEP

Note: Step 10 used H20 based on results from the B regression.




TABLE G-5. Summary of Stepwise Regression for Gumbel f, Block Cracking
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Distress Type
Step Independent P-Value Recommended R*
Variable Action
1) (2) (3) (4) (5)
1 H20 .0000 KEEP 97
2 H20 .0001 KEEP g8
CbD .1480 REMOVE
3 H20 .0002 KEEP 97
RC .9374 REMOVE
4 H20 .0001 KEEP 98
SN 1517 REMOVE
5 H20 .0000 KEEP 99
WS .0655 KEEP
6 H20 .0018 KEEP 99
WS 1104 KEEP
oC .5974 REMOVE
7 H20 .0002 KEEP 99
WS 1259 KEEP
AC .9365 REMOVE
8 H20 .0066 KEEP 99
WS 3747 KEEP
SC .5974 REMOVE

Note: Step 8 used SC based on results from the p regression.




TABLE G-6. Summary of Stepwise Regression for Gumbel p,

Longitudinal/Transverse Cracking Distress Type
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Step Independent P-Value Recommended R?
Variable Action
) (2) (3) (4) (5)
1 AC .0002 KEEP 36
2 AC .0025 KEEP 49
RC .0060 KEEP
3 AC .0006 KEEP 58
RC .0827 KEEP
SC .0140 KEEP
4 AC .0026 KEEP 63
RC 1122 REMOVE
SC .0043 KEEP
EP .0662 KEEP
5 AC .0003 KEEP 60
SC .0003 KEEP
EP .0485 KEEP
6 AC .0021 KEEP 61
SC .0002 KEEP
EP 2211 KEEP
oC .2998 REMOVE
7 AC .0009 KEEP 60
SC .0019 KEEP
EP .0726 KEEP
FC .9437 REMOVE
8 AC .0009 KEEP 60
SC .0105 KEEP
EP .0603 KEEP
WS .6743 REMOVE
9 AC .0022 KEEP 60
SC .0015 KEEP
EP .0570 KEEP
EN 6105 REMOVE
10 AC .0004 KEEP 61
SP .0002 KEEP
EP 4741 REMOVE
H20 .2452 KEEP
11 AC .0000 KEEP 61
SC .0001 KEEP
H20 .0292 KEEP
12 AC .0000 KEEP 61
SC .0073 KEEP
H20 4681 KEEP
CcDD .8789 REMOVE
13 AC .0008 KEEP 66
SC .0002 KEEP
H20 .0323 KEEP
EL .0339 KEEP
14 SC .0001 KEEP 62
H20 6785 REMOVE
EL .0003 KEEP
FC .0156 KEEP
RC 1122 KEEP

Note: Step 14 used FC and RC based on results from the B regression.



TABLE G-7. Summary of Stepwise Regression for Gumbel 3,
Longitudinal/Transverse Cracking Distress Type
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Step Independent P-Value Recommended R*
Variable Action
(1) (2) 3) (4) (5)
1 H20 .0000 KEEP 57
2 H20 .0143 KEEP 58
CDD .7995 REMOVE
3 H20 .0000 KEEP 60
EP 1567 REMOVE
4 H20 .0000 KEEP 58
oC .6173 REMOVE
5 H20 .0000 KEEP 58
WS .7165 REMOVE
6 H20 .0000 KEEP 65
FC .0157 KEEP
7 H20 .0000 KEEP 72
FC .0006 KEEP
RC .0114 KEEP
8 H20 .0000 KEEP 72
FC .0016 KEEP
RC .0116 KEEP
SC .6530 REMOVE
<] H20 .0000 KEEP 72
FC .0007 KEEP
RC .0131 KEEP
EL .7299 REMOVE
10 H20 .0000 KEEP 73
FC .0003 KEEP
RC .0076 KEEP
SN .1800 REMOVE
11 H20 .0000 KEEP 75
FC .0002 KEEP
RC .0027 KEEP
AC .0748 KEEP
12 H20 .0000 - KEEP 83
FC .0396 KEEP
RC .0000 KEEP
SC .0002 KEEP
EL .0002 KEEP

Note: Step 12 used SC and EL based on resuits from the p regression.
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TABLE G-8. Summary of Stepwise Regression for Gumbel p, Raveling/Weathering

Distress Type
Step Independent P-Value Recommended R*
Variable Action

) (2) (3) (4) (5)
1 SC .1056 REMOVE 38

2 H20 .1056 REMOVE 38

3 CDD .1056 REMOVE 38
4 WS .1056 REMOVE 38

5 FC .1056 REMOVE 38
6 SN .3896 REMOVE 13

7 RC .3995 REMOVE 12

8 OoC 4911 REMOVE 8

9 AC .9613 REMOVE 0

TABLE G-9. Summary of Stepwise Regression for Gumbel B, Raveling/Weathering

Distress Type
Step Independent P-Value Recommended R?
Variable Action

(1) (2) (3) (4) (5)

1 AC .0732 KEEP 44

2 AC .3550 KEEP 47
SC .6008 REMOVE

3 AC .3550 KEEP 47
H20 .6006 REMOVE

4 AC .3550 KEEP 47
CDD .6006 REMOVE

5 AC .3550 KEEP 47
WS .6008 REMOVE

6 AC .3550 KEEP 47
FC .60086 REMOVE

7 AC 2112 KEEP 48
RC .5568 REMOVE

8 AC .0661 KEEP 53
oC .3663 REMOVE
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APPENDIX H

FIELD DATA VERSUS MODEL CURVES

The figures shown in this appendix display the field data plotted against the
model curve for all the data used to create the model. The data is referred to by feature
name in the legend of each figure. The associated Army airfield is listed in the title of

the respective figure.
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